RAYTHEON SEMICONDUCTORS # RAYTHEON SEMICONDUCTOR DIVISION PRODUCTION FACILITIES Lowell, Massachusetts, Plant of Raytheon Semiconductor Modern Manufacturing Plants ar Equipment for the Latest in Semiconduct Devices. Manufacturing semiconductors is at best a highly delicate operation. The trend toward smaller devices . . . the need for even more product reliability . . . the inherent electrical sensitivity of semiconductor materials to contamination of all sorts — these are some reasons why semiconductor manufacturing is such a demanding skill. Well-trained personnel is a necessity for this type of operation. And Raytheon Semiconductor Division has it. Equally-important are our modern, contaminant-free production areas and trend setting equipment. Equipment is an especially critical area, since the special requirements of semiconductor manufacturing necessitate special machinery not generally available from outside sources. To meet the stringent requirements of today's products, we have established our own Equipment Development Department. This group has designed and developed much of the precisi equipment used in our plants. A good example of this is the automatic boat loader used on our automated tran- Lewiston, Maine, Plant of Raytheon Semiconductor. istor production lines. These boats (or ssembly jigs) were previously loaded manually with materials to form alloy junction transistors. This operation required considerable manual dexterity as well as time. With the automatic boat loader developed by our Equipment Development Department, product reliability was considerably increased by elimination of manual manipulations, while customer costs were decreased. Raytheon Semiconductor's manufacturing operations are centered in two of the newest, most modern semiconductor plants presently in operation. One is located in Lowell, Massachusetts, and the other at Lewiston, Maine. Much of the equipment for these plants — which are considered model semiconductor manufacturing facilities — was developed especially by our Equipment Development Department to provide better products at lower cost than previously available. Both the 200,000-square foot Lowell Plant and the 116,500 square foot Lewisnn Plant are fully air-conditioned, contain a special water purification system, humidity and dust controls, and many other unique manufacturing features. ## SILICON SUBMINIATURE GLASS DIODES | GENERAL PL | JRPOSE | | | | | | | | | |-----------------|-----------|-----|-------------------------|--------|------------------|--------|-------------|---------|---| | | | PIV | lr Min.
@ 1.0V
mA | N | lo
fax.
mA | Maximu | m Reverse (| Current | Max.
One
Second
Surge
Current
Amps | | | | | | @ 25°C | @ 150°C | Volts | @ 25°C | @ 150°C | | | Temperature | 1N456 | 30 | 40 | 90 | 40 | 25 | 0.025 | 5 | 0.7 | | Range | 1N457 | 70 | 20 | 75 | 36 | 60 | 0.025 | 5 | 0.6 | | -65°C to +200°C | 1N458 | 150 | 7 | 55 | 24 | 125 | 0.025 | 5 | 0.5 | | CASE K | 1N459 | 200 | 3 | 40 | 17 | 175 | 0.025 | 5 | 0.4 | | | 1N461 | 30 | 15 | 60 | 25 | 25 | 0.5 | 30 | 0.7 | | | 1N462 | 70 | 5 | 50 | 25 | 60 | 0.5 | 30 | 0.6 | | | 1N463 | 200 | 1 | 30 | 15 | 175 | 0.5 | 30 | 0.4 | | | 1N464 | 150 | 4 3 | 40 | 20 | 125 | 0.5 | 30 | 0.5 | | | JAN 1N457 | 70 | 20 | 75 | _ | 60 | 0.025 | 5 | 0.6 | | | JAN 1N458 | 150 | 7 | 55 | _ | 125 | 0.025 | 5 | 0.5 | | | JAN 1N459 | 200 | 3 | 40 | 1- | 175 | 0.025 | 5 | 0.4 | #### HIGH CONDUCTANCE — GENERAL PURPOSE | Temperature 1N456A 30 1.0 200 70 25 0.025 5 1.5 1.5 1.5 1.456A 30 1.0 200 70 25 0.025 5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 | | PIV | | Vr Max.
@ 100 mA
Volts | | lo
fax.
mA | Maxim | um Reverse (
in μΑ | Current | Max.
One
Second
Surge
Current
Amps | |--|---------------------------|------------|-----------------|------------------------------|--------|------------------|-------|-----------------------|---------|---| | Range | | | | | @ 25°C | @ 150°C | Volts | @ 25°C | @ 150°C | | | -65°C to +200°C 1N458A 150 1.0 200 70 125 0.025 5 1.5 CASE K 1N459A 200 1.0 200 70 175 0.025 5 1.5 1.5 1N461A 30 1.0 200 70 25 0.5 30 1.5 1N462A 70 1.0 200 70 60 0.5 30 1.5 1N463A 200 1.0 200 70 175 0.5 30 1.5 1N464A 150 1.0 200 70 125 0.5 30 1.5 | Temperature | 1N456A 30 | Temperature | 1.0 | 200 | 70 | 25 | 0.025 | | | | CASE K 1N459A 200 1.0 200 70 175 0.025 5 1.5 1N461A 30 1.0 200 70 25 0.5 30 1.5 1N462A 70 1.0 200 70 60 0.5 30 1.5 1N463A 200 1.0 200 70 175 0.5 30 1.5 1N464A 150 1.0 200 70 125 0.5 30 1.5 | Range | 1N457A 70 | Range | 1.0 | 200 | 70 | 60 | 0.025 | | | | 1N461A 30 1.0 200 70 25 0.5 30 1.5
1N462A 70 1.0 200 70 60 0.5 30 1.5
1N463A 200 1.0 200 70 175 0.5 30 1.5
1N464A 150 1.0 200 70 125 0.5 30 1.5 | -65°C to +200°C | 1N458A 150 | -65°C to +200°C | 1.0 | 200 | 70 | 125 | 0.025 | | | | 1N462A 70 1.0 200 70 60 0.5 30 1.5 1N463A 200 1.0 200 70 175 0.5 30 1.5 1N464A 150 1.0 200 70 125 0.5 30 1.5 | CASE K | 1N459A 200 | CASE K | 1.0 | 200 | 70 | 175 | 0.025 | | | | 1N463A 200 1.0 200 70 175 0.5 30 1.5
1N464A 150 1.0 200 70 125 0.5 30 1.5 | | 1N461A 30 | | 1.0 | 200 | 70 | 25 | 0.5 | 30 | 1.5 | | 1N464A 150 1.0 200 70 125 0.5 30 1.5 | | 1N462A 70 | | 1.0 | 200 | 70 | 60 | 0.5 | 30 | 1.5 | | | Park Malling and State of | 1N463A 200 | | 1.0 | 200 | 70 | 175 | 0.5 | 30 | 1.5 | | 1N482 40 1.1 100 25 30 0.25 30 1.0 | | 1N464A 150 | | 1.0 | 200 | 70 | 125 | 0.5 | 30 | 1.5 | | | | 1N482 40 | | 1.1 | 100 | 25 | 30 | 0.25 | 30 | 1.0 | | 1N483 80 1.1 100 25 60 0.25 30 1.0 | | 1N483 80 | | 1.1 | 100 | 25 | 60 | 0.25 | 30 | 1.0 | | 1N484 150 1.1 100 25 125 0.25 30 1.0 | | 1N484 150 | | 1.1 | 100 | 25 | 125 | 0.25 | 30 | 1.0 | | 1N485 200 1.1 100 25 175 0.25 30 1.0 | | 1N485 200 | | 1.1 | 100 | 25 | 175 | 0.25 | 30 | 1.0 | | 1N486 250 1.1 100 25 225 0.25 50 1.0 | | 1N486 250 | | 1.1 | 100 | 25 | 225 | 0.25 | 50 | 1.0 | | 1N487 330 1.1 100 25 300 0.25 50 1.0 | | 1N487 330 | | 1.1 | 100 | 25 | 300 | 0.25 | 50 | 1.0 | | 1N488 420 1.1 100 25 380 0.25 50 1.0 | | 1N488 420 | | 1.1 | 100 | 25 | 380 | 0.25 | 50 | 1.0 | #### HIGH CONDUCTANCE — HIGH RESISTANCE | HIGH CONDU | CIANCE - | - nigh k | ESIST AIN | ICE | | | | | | |-------------------------------|----------|----------|-----------|-----|----|-----|-------|----|-----| | | | | | | | | | | | | Temperature | 1N482A | 40 | 1.0 | 200 | 50 | 30 | 0.025 | 15 | 2.0 | | Range | 1N482B | 40 | 1.0 | 200 | 50 | 30 | 0.025 | 5 | 2.0 | | -65°C to +200°C | 1N483A | 80 | 1.0 | 200 | 50 | 60 | 0.025 | 15 | 2.0 | | CASE K | 1N483B | 80 | 1.0 | 200 | 50 | 60 | 0.025 | 5 | 2.0 | | | 1N484A | 150 | 1.0 | 200 | 50 | 125 | 0.025 | 15 | 2.0 | | | 1N484B | 150 | 1.0 | 200 | 50 | 125 | 0.025 | 5 | 2.0 | | | 1N485A | 200 | 1.0 | 200 | 50 | 175 | 0.025 | 15 | 2.0 | | | 1N485B | 200 | 1.0 | 200 | 50 | 175 | 0.025 | 5 | 2.0 | | the state of the party of the | 1N486A | 250 | 1.0 | 200 | 50 | 225 | 0.05 | 25 | 2.0 | | | 1N486B | 250 | 1.0 | 200 | 50 | 225 | 0.05 | 5 | 2.0 | | | 1N487A | 330 | 1.0 | 200 | 50 | 300 | 0.1 | 25 | 2.0 | | | 1N488A | 420 | 1.0 | 200 | 50 | 380 | 0.1 | 25 | 2.0 | ## SILICON UHF-MIXER DIODES | GENERAL P | URPOSE | 在1000000000000000000000000000000000000 | |-----------|-----------------|--| | | | Peak
Reverse
Voltage | | CASE R | 1N82*
1N82A* | Designed for efficient low-noise mixer operation from 470 to 890 mc. | ^{*}Units are tested for noise figure in instruments designed to correlate with customer applications. ## SILICON DIFFUSED RECTIFIERS #### HIGH CURRENT — STUD MOUNTED | | | Peak Recurrent
Inverse Voltage | Average
Rectified
Current
@ 150°C
Case Temp.
Amps | Max. Average
Reverse Current
@ 150°C
mA | Vf
@ 25°C
Volts
@ Amps | Max.
Half Cycle
Surge
Current
Amps | |-----------------------------|---------|-----------------------------------|--|--|---------------------------------|--| | Temperature | 1N248 | 50 | 10 | 5 | 1.5 @ 25 | 250 | | Range | 1N249 | 100 | 10 | 5 | 1.5 @ 25 | 250 | | -65°C to +190°C | 1N250 | 200 | 10 | 5 | 1.5 @ 25 | 250 | | CASE P | 1N248A | 50 | 20 | 5 | 1.5 @ 50 | 250 | | | 1N249A | 100 | 20 | 5 | 1.5 @ 50 | 250 | | | 1N250A | 200 | 20 | 5 | 1.5 @ 50 | 250 | | | 1N1191A | 50 | 22 | 5 | 1.2 @ 50 | 100▲ | | | 1N1192A | 100 | 22 | 5 | 1.2 @ 50 | 100▲ | | | 1N1193A | 150 | 22 | 5 | 1.2 @ 50 | 100▲ | | | 1N1194A | 200 | 22 | 5 | 1.2 @ 50 | 100▲ | | | 1N1195 | 300 | 18 | 10 | 1.5 @ 50 | 200 | | A CONTRACTOR AND CONTRACTOR | 1N1196 | 400 | 18 | 10 | 1.5 @ 50 | 200 | | | 1N1197 | 500 | 18 | 10 | 1.5 @ 50 | 200 | | | 1N1198 | 600 | 18 | 10 | 1.5 @ 50 | 200 | ▲For one second #### MEDIUM CURRENT — STUD MOUNTED | WILDIOW CON | KENI — 310 | D MOOK | ILD | CAN WAR | STEET /E | MARKET IN | | | |--------------------
--|--|---------------------------|---|----------|--|---------------------------------|--| | | | Peak
Recurrent
Inverse
Voltage | Red
Cu
@ Sp
Case | erage
ctified
irrent
pecified
Temp.
mps
: @ 135°C | @ S | tum Reverse
Current
Specified
foltage
in #A
@ 135°C | Vf
@ 25°C
Volts
@ Amps | Max.
Half Cycle
Surge
Current
Amps | | Low Reverse | 1N253 | 95 | 3.0 | 1.0 | 95 | 100* | 1.5 @ 1.0 | 4 ‡ | | Current | 1N254 | 190 | 1.5 | 0.4 | 190 | 100* | 1.5 @ 0.5 | 1.5‡ | | Temperature | 1N255 | 380 | 1.5 | 0.4 | 380 | 150* | 1.5 @ 0.5 | 1.5‡ | | Range | 1N256 | 570 | 1.0 | 0.2 | 570 | 250* | 2. @ 0.5 | 1.0‡ | | -65°C to +150°C | A STATE OF THE STA | | 100000 | A THE STATE OF | Volts | @ 25°C | @ 25°C | | | CASE N | JAN 1N253 | 75 | CEAN ST | 1.0 | 75 | 10 | 1.5 @ 1.0 | 4 🛦 | | | JAN 1N254 | 150 | 13700 | 0.4 | 150 | 10 | 1.5 @ 0.5 | 1.5▲ | | | JAN 1N255 | 350 | | 0.4 | 350 | 10 | 1.5 @ 0.5 | 1.5▲ | | Low Reverse | JAN 1N256 | 500 | | 0.2 | 500 | 20 | 2 @ 0.5 | 1.0▲ | | Current Tunes | 111000 (P) | The same of sa | @ 50°C | @ 150°C | | @ 150°C | | AREA TO SERVICE | | Mag. Amp. Types | 1N332, (R) | 400 | 2 | 0.4 | 400 | 200* | 2 @ 0.8 | 15 | | Temperature | 1N333, (R) | 400 | 1 | 0.2 | 400 | 200* | 2 @ 0.4 | 10 | | Range | 1N334, (R) | 300 | 2 | 0.4 | 300 | 200* | 2 @ 0.8 | 15 | | -65°C to +175°C | 1N335, (R) | 300 | 1 | 0.2 | 300 | 200* | 2 @ 0.4 | 10 | | CASE N and | 1N336, (R) | 200 | 2 | 0.4 | 200 | 100* | 2 @ 0.8 | 15 | | CASE O | 1N337, (R) | 200 | 1 | 0.2 | 200 | 100* | 2 @ 0.4 | 10 | | | 1N339, (R) | 100
100 | 2 | 0.4 | 100 | 100* | 2 @ 0.8 | 15 | | | 1N340, (R) | 100 | 1 | 0.2 | 100 | 100* | 2 @ 0.4 | 10 | | Power Supply Types | 1N341, (R) | 400 | 2 | 0.4 | 400 | 500* | 2 @ 0.8 | 15 | | Temperature | 1N342, (R) | 400 | 1 | 0.4 | 400 | 500* | 2 @ 0.4 | 10 | | Range | 1N342, (R) | 300 | 2 | 0.2 | 300 | 500* | 2 @ 0.4 | 15 | | -65°C to +175°C | 1N344, (R) | 300 | 1 | 0.4 | 300 | 500* | 2 @ 0.4 | 10 | | CASE N and | 1N345, (R) | 200 | 2 | 0.4 | 200 | 500* | 2 @ 0.8 | 15 | | CASE O | 1N346, (R) | 200 | 1 | 0.2 | 200 | 500* | 2 @ 0.4 | 10 | | | 1N348, (R) | 100 | 2 | 0.4 | 100 | 500* | 2 @ 0.8 | 15 | | | 1N349, (R) | 100 | 1 | 0.2 | 100 | 500* | 2 @ 0.4 | 10 | | | | (| 9 30°C | @ 100°C | | @ 25°C | | | | Low Reverse | 1N607A, (R) | 50 | 1.8 | 1.0 | 50 | 1.0 | 1.5 @ 0.2 | 2** | | Current | 1N608A, (R) | 100 | 1.8 | 1.0 | 100 | 1.0 | 1.5 @ 0.2 | 2** | | High Forward | 1N609A, (R) | 150 | 1.8 | 1.0 | 150 | 1.0 | 1.5 @ 0.2 | 2** | | Conductance | 1N610A, (R) | 200 | 1.8 | 1.0 | 200 | 1.0 | 1.5 @ 0.2 | 2** | | Temperature | 1N611A, (R) | 300 | 1.8 | 1.0 | 300 | 1.0 | 1.5 @ 0.2 | 2** | | Range | 1N612A, (R) | 400 | 1.8 | 1.0 | 400 | 1.5 | 1.5 @ 0.2 | 2** | | -65°C to +150°C | 1N613A, (R) | 500 | 1.8 | 1.0 | 500 | 2.0 | 1.5 @ 0.2 | 2** | | CASE N and | 1N614A, (R) | 600 | 1.8 | 1.0 | 600 | 2.5 | 1.5 @ 0.2 | 2** | | CASE O | | | | | | | | | (R) denotes reverse polarity (Anode-to-Stud) ▲For 1 second CASE P CASE N ^{*}Full Cycle Average [‡]For 0.1 second @ 135°C ^{**}For 0.1 second ## SILICON DIFFUSED RECTIFIERS | MEDIUM CUI | RRENT — STU | JD MOU | NTED | | | | | | |-----------------|--|---|------------------------------|---
--|---|---|--| | | | Peak
Recurrent
Inverse
Voltage | Re
Cu
@ S
Case
A | erage
ctified
irrent
pecified
t Temp.
mps
: @ 135°C | @ S | tum Reverse
current
Specified
oltage
in μA
@ 135°C | Vf
@ 25°C
Volts
@ Amps | Max.
Half Cycle
Surge
Current
Amps | | | THE RESIDENCE OF THE PARTY T | | @ 100°C | | | | | | | Low Reverse | 1N550, (R) | 100 | 2.0 | 0.5 | 100 | 0.5 | 1.5 @ 1.0 | 15 | | Current | 1N551, (R) | 200 | 2.0 | 0.5 | 200 | 1.0 | 1.5 @ 1.0 | 15 | | Temperature | 1N552, (R) | 300 | 2.0 | 0.5 | 300 | 1.5 | 1.5 @ 1.0 | 15 | | Range | 1N553, (R) | 400 | 2.0 | 0.5 | 400 | 2.5 | 1.5 @ 1.0 | 15 | | -65°C to +150°C | 1N554, (R) | 500 | 2.0 | 0.5 | 500 | 3.5 | 1.5 @ 1.0 | 15 | | CASE N and | 1N555, (R) | 600 | 2.0 | 0.5 | 600 | 5.0 | 1.5 @ 1.0 | 15 | | CASE O | | | A CONTRACTOR | | | | | | | | | | @ 85°C | @ 150°C | | @ 150°C | @ 150°C | | | Temperature | 1N1115, (R) | 100 | 1.5 | 0.6 | 100 | 300* | 0.65* @ 0.2 | 30 | | Range | 1N1116, (R) | 200 | 1.5 | 0.6 | 200 | 300* | 0.65* @ 0.2 | 30 | | -65°C to +175°C | 1N1117, (R) | 300 | 1.5 | 0.6 | 300 | 300* | 0.65* @ 0.2 | 30 | | CASE N and | 1N1118, (R) | 400 | 1.5 | 0.6 | 400 | 300* | 0.65* @ 0.2 | 30 | | CASE O | 1N1119, (R) | 500 | 1.5 | 0.6 | 500 | 300* | 0.65* @ 0.2 | 30 | | | 1N1120, (R) | 600 | 1.5 | 0.6 | 600 | 300* | 0.65* @ 0.2 | 30 | | | A STATE OF THE STA | | dente de | | | | | A CONTRACTOR OF THE PARTY TH | | | | The second second second | | | Contract to the last of la | | Street Section 19 19 19 19 19 19 19 19 19 19 19 19 19 | | | MEDIUM CUR | RENT — STU | MOUNT | ΓED | | | | | | | |--|--
--|-------------|---|--|-----------------------------------|----------------------|--|--| | | | Peak
Recurrent
Inverse
Voltage | Cui
@ Sp | Rectified
rrent
ecified
mp. Amps | | um Revers
Specified V
in μΑ | se Current
oltage | Vf
@ 25°C
Volts
@ Amps | Max.
Half Cycle
Surge
Current
Amps | | Low Reverse | 1N1104 (D) | 200 | | @ 150°C | Volts | @ 25°C | @ 150°C | 11010 | 25 | | Current | 1N1124, (R) | 200 | 3.0 | 1.0 | 200 | 10 | 300* | 1.1 @ 1.0 | | | | 1N1124A, (R) | 250 | 3.3 | 1.2 | 250 | 10 | 300* | 1.1 @ 1.0 | 25 | | Temperature | 1N1125, (R) | 300 | 3.0 | 1.0 | 300 | 10 | 300* | 1.1 @ 1.0 | 25 | | Range | 1N1126, (R) | 400 | 3.0 | 1.0 | 400 | 10 | 300* | 1.1 @ 1.0 | 25 | | -65°C to +165°C | 1N1126A, (R) | 500 | 3.3 | 1.2 | 500 | 10 | 300* | 1.1 @ 1.0 | 25 | | CASE N | 1N1127, (R) | 500 | 3.0 | 1.0 | 500 | 10 | 300* | 1.1 @ 1.0 | 25 | | | 1N1128, (R) | 600 | 3.0 | 1.0 | 600 | 10 | 300* | 1.1 @ 1.0 | 25 | | | 1N1128A, (R) | 750 | 3.3 | 1.2 | 750 | 10 | 300* | 1.1 @ 1.0 | 25 | | The state of s | USN 1N1124A | 200 | 3.3 | 1.0 | 200 | 10 | 200 | 1.1 @ 1.0 | 25 | | | USN 1N1126A | 400 | 3.3 | 1.0 | 400 | 10 | 250 | 1.1 @ 1.0 | 25 | | | USN 1N1128A | 600 | 3.3 | 1.0 | 600 | 10 | 350 | 1.1 @ 1.0 | 25 | | | | | @ 30°C | | | | | | | | The state of s | 1N2512, (R) | 100 | 4.0 | 1.0 | 100 | 2 | | 1.1 @ 1.0 | 30 | | | 1N2513, (R) | 200 | 4.0 | 1.0 | 200 | 2 | | 1.1 @ 1.0 | 30 | | | 1N2514, (R) | 300 | 4.0 | 1.0 | 300 | 2 | | 1.1 @ 1.0 | 30 | | | 1N2515, (R) | 400 | 4.0 | 1.0 | 400 | 2 | | 1.1 @ 1.0 | 30 | | | 1N2516, (R) | 500 | 4.0 | 1.0 | 500 | 2 | | 1.1 @ 1.0 | 30 | | PROBLEM TO BE SEEN | The state of s | Company of the Compan | | | A STATE OF THE STA | 2 | S. 14 | the state of the state of the state of | the same of sa | | | 1N2517, (R) | 600 | 4.0 | 1.0 | 600 | 2 | | 1.1 @ 1.0 | 30 | (R) denotes reverse polarity (Anode-to-Stud) ^{*}Full Cycle Average | MEDIUM CUR | RRENT — IN | SULATED | STUD | | | | | | |-----------------|------------|---|--------------|--|-----------|--------------------------------------|---------------------------------|--| | | | Peak
Recurrent
Inverse
Voltage | Cur
@ Spe | Rectified
rent
ecified
np. Amps | Current @ | m Reverse
② Specified
ge in μA | Vf
@ 25°C
Volts
@ Amps | Max.
Half Cycle
Surge
Current
Amps | | | | | @ 30°C | @ 150°C | Volts | @ 25°C | | | | High Forward | 1N2518 | 100 | 4.0 | 1.0 | 100 | 2 | 1.1 @ 1.0 | 30 | | Conductance | 1N2519 | 200 | 4.0 | 1.0 | 200 | 2 | 1.1 @ 1.0 | 30 | | Temperature | 1N2520 | 300 | 4.0 | 1.0 | 300 | 2 | 1.1 @ 1.0 | 30 | | Range | 1N2521 | 400 | 4.0 | 1.0 | 400 | 2 | 1.1 @ 1.0 | 30 | | -65°C to +165°C | 1N2522 | 500 | 4.0 | 1.0 | 500 | 2 | 1.1 @ 1.0 | 30 | | CASE O | 1N2523 | 600 | 4.0 | 1.0 | 600 | 2 | 1.1 @ 1.0 | 30 | | | | | | | | | | | CASE O 10-32 Thd. 0.453 " max. ## SILICON DIFFUSED RECTIFIERS | LOW CURREN | NT — LEA | D MOUI | NTED | | | N. A. | | | | | |----------------------------|---|---------------------------------|--------------------------------------|----------------|-------------------|------------------------------------|---------------------|--------------------------|--------------------|--------------------------| | | | Peak | | | | | | | Vf | Max.
Half Cycle | | | | Recurrent
Inverse
Voltage | Average Re
Current @
Temperatu | Specified | | num Revers
Specified V
in μA | e Current
oltage | V | 25°C
olts
mA | Surge
Current
Amps | | High Conductance | 111100 | | @ 50°C @ | 2 150°C | Volts | @ 25°C | @ 150°C
200* | 1.5 | @ 750 | 15 | |
Temperature | 1N440B
1N441B | 100
200 | 750
750 | 250
250 | 100
200 | 0.3 | 200* | 1.5 | @ 750 | 15 | | Range | 1N442B | 300 | 750 | 250 | 300 | 1.0 | 200* | 1.5 | @ 750 | 15 | | -65°C to +175°C | 1N443B
1N444B | 400 | 750
750 | 250
250 | 400
500 | 1.5
1.75 | 200* | 1.5 | @ 750
@ 750 | 15
15 | | CASE Q | 1N444B
1N445B | 500
600 | 750
750 | 250 | 600 | 2.0 | 200* | 1.5 | @ 750 | 15 | | Low Reverse | 1N536 | 50 | 750 | 250 | 50 | 10 | 300* | 1.0 | @ 500 | 15 | | Current
(Metal & Glass) | 1N537
1N538 | 100 | 750
750 | 250
250 | 100 | 10
10 | 300*
300* | 1.0 | @ 500
@ 500 | 15
15 | | Temperature | 1N538
1N539 | 200
300 | 750
750 | 250 | 300 | 10 | 300* | 1.0 | @ 500 | 15 | | Range | 1N540 | 400 | 750 | 250 | 400 | 10 | 300* | 1.0 | @ 500 | 15 | | -65°C to +175°C | 1N1095 | 500 | 750
750 | 250 | 500 | 10 | 300* | 1.0 | @ 500
@ 500 | 15
15 | | CASE Q | 1N547
(1N1096) | 600 | 750 | 250 | 600 | 10 | 300*
@ 25° | 1.0
C | @ 500 | 13 | | | JAN 1N538 | 200 | KER | 250 | 200 | 10 | 500 | 1.1 | @ 500 | 15 | | | JAN 1N540 | 400 | - | 250 | 400 | 10 | 500 | 1.1 | @ 500 | 15 | | | JAN 1N547 | 600 | | 250 | 600 | 10 | 500 | 1.2 | @ 500 | 15 | | | | | | @ 100°C | C. C. C. C. C. | | | | @ 25°C | | | Low Reverse | 1N599A | 50 | 600 | 400 | 50 | 1.0 | | 1.2 | @ 600
@ 600 | 15
15 | | Current
Temperature | 1N600A
1N601A | 100
150 | 600
600 | 400
400 | 100 | 1.0 | | 1.2 | @ 600 | 15 | | Range | 1N602A | 200 | 600 | 400 | 200 | 1.0 | | 1.2 | @ 600 | 15 | | -65°C to +150°C | 1N603A | 300 | 600 | 400 | 300 | 1.0 | | 1.2 | @ 600 | 15 | | CASE Q | 1N604A
1N605A | 400
500 | 600 | 400 | 400
500 | 1.5
2.0 | | 1.2 | @ 600
@ 600 | 15
15 | | | 1N606A | 600 | 600 | 400 | 600 | 2.5 | | 1.2 | @ 600 | 15 | | 0 | | | | 1220 | | | | | | | | Low Reverse | 1N1100 | Volts
100 | @ 50°C
750 | @ 150°C
250 | 100 | @ 150°C
300* | | 1.5 | @ 750 | 15 | | Current | 1N1101 | 200 | 750 | 250 | 200 | 300* | | 1.5 | @ 750 | 15 | | (Metal & Glass) | 1N1102 | 300 | 750
750 | 250 | 300 | 300* | | 1.5 | @ 750 | 15 | | Temperature
Range | 1N1103
1N1104 | 400
500 | 750
750 | 250
250 | 400
500 | 300*
300* | | 1.5
1.5 | @ 750
@ 750 | 15
15 | | -65°C to +175°C | 1N1104
1N1105 | 600 | 750 | 250 | 600 | 300* | | 1.5 | @ 750 | 15 | | CASE Q | | | | | | | | | | | | | | | @ 25°C | @ 125°C | | @ 125°C | | | | - | | Low Reverse | 1N1487 | 100 | 750 | 250 | 100 | 300* | | | * @ 250 | 15 | | Current
(Metal & Glass) | 1N1488 | 200 | 750
750 | 250 | 200 | 300*
300* | THE REAL PROPERTY. | | * @ 250
* @ 250 | 15 | | Temperature | 1N1489
1N1490 | 300
400 | 750
750 | 250
250 | 300
400 | 300* | | | * @ 250
* @ 250 | 15
15 | | Range | 1N1491 | 500 | 750 | 250 | 500 | 300* | | 0.55* | * @ 250 | 15 | | -65°C to +150°C | 1N1492 | 600 | 750 | 250 | 600 | 300* | | 0.55* | * @ 250 | 15 | | CASE Q | | N.S. (A) | | | | | | Che in the | | | | Medium Temperature | | N N | The second second second | @ 100°C | The second second | @ 100°C | | The second second second | 100°C | | | Temperature | 1N1692
1N1693 | 100
200 | 600
600 | 250
250 | 200 | 500*
500* | | 0.6* | _ | 20 | | Range | 1N1693 | 300 | 600 | 250 | 300 | 500* | | 0.6* | | 20 | | -65°C to +115°C | 1N1695 | 400 | 600 | 250 | 400 | 500* | | 0.6* | @ 250 | 20 | | CASE Q | 1N1696
1N1697 | 500
600 | 600
600 | 250
250 | 500
600 | 500*
500* | | 0.6* | _ | 20
20 | | THE REPORT OF THE | 1111097 | 800 | 800 | 250 | 600 | 500 | | 0.6 | @ 250 | 20 | | Padia 9 TV | | | @ 80°C | | | | @ 100°C | | @ 25°C | | | Radio & TV Power Supplies | 1N1763
1N1764 | 400
500 | 750
750 | | 400
500 | 100
100 | 1 mA
1 mA | 1.5
1.5 | @ 750
@ 750 | 35‡
35‡ | | Temperature | 111704 | 300 | /30 | | 300 | 100 | TIIIA | 1.5 | W 730 | 1 224 | | nge | | | | | | | | | | | | 5°C to +100°C
CASE Q | | | | | | | | | | | | | 0.0000000000000000000000000000000000000 | | Contract of the second | | | William William | 12/19/19/19 | | CHIEF SH | | ^{*} Full Cycle Average [‡] For 2 milliseconds # RAYTHEON SUBMINIATURE TRANSISTORS... Types for a WIDE RANGE of Applications... Some people call them miniature transistors . . . and others microminiature transistors. At Raytheon Semiconductor we call them subminiature transistors. But no matter what you call them, Raytheon Semiconductor has the most complete line of these compact devices in the industry. Germanium and silicon . . . PNP and NPN . . . single-ended and double-ended construction — the majority of Raytheon subminiature transistors are electrical equivalents of popular JEDEC-30 size transistors, and are now available in a package as small as 1/21 the volume of the JEDEC-30. Reliable Raytheon subminiature transistors offer you an ideal solution for your most critical space requirements. To meet your most unusual — and compact — circuit needs, specify Raytheon doubleended silicon transistors. These units, used with or without their singleended equivalents, enable you to utilize a wide variety of mounting possibilities — single and multiple board configurations, feed-through connections, welded assemblies. of subminiature transistors, it will pay you For the newest and most complete selection to check Raytheon Semiconductor first! A FEW OF THE MANY MOUNTING POSSIBILITIES FOR RAYTHEON SINGLE-ENDED AND DOUBLE-ENDED SUBMINS . . . 8 # RELIABILITY IS BUILT-IN **RAYTHEON SUBMINS 5-WAYS!** - 50 mils of hard glass oxide-bonded to Kovar leads of uniformly fine crystalline structure — wetting is assured by controlled glass rise. - Full areal bond of hard glass to Kovar pan assured by tight tolerances on glass volume. - Full circumferential weld of Kovar pan to steel case. - Production sampling of seal quality using destructive testing. - Statistical sampling of all outgoing lots. PLUS ... Transistor subassemblies used in Raytheon submins are identical to those used in Raytheon high reliability TO-5 transistors — a further assurance of reliable operation. All units are sealed in a controlled atmosphere and are vacuum baked and aged at elevated temperatures to insure stability of electrical parameters. Silicon Submin Actual Size: 0.130" x 0.160" Germanium Submin Actual Size: 0.130" x 0.130" # SINGLE-ENDED SUBMINS — GERMANIUM TRANSISTORS | COMPUTER | SWITCHIN | G | | | | | | | |----------------|----------|----------------------|------------|----------|---------------------|-------------------------|---------------------|--------------------| | | Туре | BVPT
Min
Volts | fαb
Min | h
Min | FE _I Max | hFE ₂
Min | Rsat
Max
ohms | Applications | | PNP | CK4A | -24 | 4.0 | 30 | | 24 | | Medium Current | | Temperature | CK26A | -25 | 3.0 | 30 | 60 | 10 | 3.2 | High Frequency | | Range | CK25A | -30 | 2.5 | 20 | 40 | 10 | 3.2 | High Gain Switches | | -65°C to +85°C | CK27A | -20 | 5.0 | 40 | 80 | 15 | 2.1 | | | CASE J | CK28A | -15 | 10.0 | 60 | _ | 20 | 1.6 | | | | | | | | | | | | | GENERAL PURI | POSE — R | ADIO FREC | QUENCY | |--------------|----------|-----------|--------| |--------------|----------|-----------|--------| | | Туре | BVCEO
Min
Volts | fαb
Avg
mc | hfe
Avg | Cob
f=1mc
Max.
pf | rb"
Max
ohms | |--------------------------|-------|-----------------------|------------------|------------|----------------------------|--------------------| | PNP | CK13A | -18 | 2.5 | 30 | 18 | 100 | | Temperature | CK14A | -15 | 7.0 | 60 | 18 | 120 | | Range | CK16A | -12 | 10.0 | 80 | 18 | 140 | | -65°C to +85°C
CASE J | CK17A | -10 | 18.0 | 140 | 18 | 160 | #### GENERAL PURPOSE — AUDIO FREQUENCY | | Туре | BVCEO
Max
Volts | Min hf | e
Max | Power
Gain
Class A
Avg
DB | ICO
Max
μA | Noise
Factor
Max
DB | |----------------|-------|-----------------------|--------|----------|---------------------------------------|------------------|------------------------------| | PNP | CK22A | -20 | 54 | 132 | 44 | 5 | 6.5 | | Temperature | CK64A | -29 | 13 | 45 | 40 | 5 | 22.0 | | Range | CK65A | -24 | 27 | 66 | 42 | 5 | 22.0 | | -65°C to +85°C | CK66A | -20 | 54 | 132 | 44 | 5 | 22.0 | | CASE J | CK67A | -15 | 108 | 264 | 45 | 5 | 22.0 | # SINGLE-ENDED AND DOUBLE-ENDED SUBMINS — WELDED CASE GERMANIUM TRANSISTORS | COMPUTER | SWITCHING | | | | | | | | | |-------------------|---|---
--|-----------------------|--|------------------|----------------------|-------------------|----------------| | | Submin
Single
Ended
Type
Case F | Submin
Double
Ended
Type
Case G | TO-5
Equivalent
Case A | BVPT
Min.
Volts | hFE: Min. | hFE ₂ | Rsat
Max.
ohms | fαb
Min.
mc | Applications | | NPN | 2N815 | 2N816 | 2N388 | 20 | 60 | 30 | 5.0 | 5.0 | Medium Current | | Temperature | 2N817 | 2N818 | 2N438A | 25 | 20 | _ | 5.0 | 2.5 | High Frequency | | Range | 2N819 | 2N820 | 2N439A | 20 | 30 | _ | 5.0 | 5.0 | High Gain | | -65°C to +85°C | 2N821 | 2N822 | 2N440A | 15 | 40 | _ | 5.0 | 10.0 | Switches | | | 2N823 | 2N824 | 2N1605 | 24 | 40 | 24 | 5.0 | 4.0 | | | PNP | 2N799 | 2N800 | 2N404 | -24 | 30 | 24 | _ | 4.0 | Medium Current | | Temperature Range | 2N801 | 2N802 | 2N426 | -25 | 30 | 10 | 3.2 | 3.0 | High Frequency | | -65°C to +85°C | 2N803 | 2N804 | 2N427 | -20 | 40 | 15 | 2.1 | 5.0 | High Gain | | | 2N805 | 2N806 | 2N428 | -15 | 60 | 20 | 1.6 | 10.0 | Switches | | | 2N807 | 2N808 | 2N582 | -14 | 40 | _ | _ | 14.0 | | | | 2N825 | 2N826 | 2N396 | -20 | 30 | 15 | 2.1 | 5.0 | | | | | | The second secon | | A COLUMN TO SERVICE AND ADDRESS OF THE PARTY | | | | | #### **GENERAL PURPOSE RADIO FREQUENCY** | | Submin
Single
Ended
Type
Case F | Submin
Double
Ended
Type
Case G | TO-5
Equivalent
Case A | BVCEO
Max.
Volts | fαb
Min.
mc | hfe
Min. | Cob
f=1mc
Max.
pf | rb"
Max.
ohms | |----------------|---|---|------------------------------|------------------------|-------------------|-------------|----------------------------|---------------------| | PNP | 2N809 | 2N810 | 2N414 | -15 | 3.0 | 30 | 20 | 120 | | Temperature | 2N811 | 2N812 | 2N416 | -12 | 5.0 | 50 | 20 | 140 | | Range | 2N813 | 2N814 | 2N417 | -10 | 15.0 | 70 | 20 | 160 | | -65°C to +85°C | | | | | | | | Water State | CASE J max. dia. .130" .025" # SINGLE-ENDED AND DOUBLE-ENDED SUBMINS — WELDED CASE GERMANIUM TRANSISTORS | GENERAL P | URPOSE A | UDIO | | | | | | | | |--------------------------------------|---|---|------------------------------|------------------------|------------|-----------|-------------------------------------|-------------------|-------------------------------| | 0 | Submin
Single
Ended
Type
Case F | Submin
Double
Ended
Type
Case G | TO-5
Equivalent
Case A | BVCEO
Max.
Volts | hf
Min. | e
Max. | Power Gain
Class A
Avg.
db | ICO
Max.
μΑ | Noise
Figure
Max.
db | | PNP | CK22B | CK22C | 2N422 | -20 | 54 | 132 | 44 | 10 | 6.5 | | Temperature | CK64B | CK64C | 2N464 | -29 | 13 | 45 | 40 | 10 | 22.0 | | Range | CK65B | CK65C | 2N465 | -24 | 27 | 66 | 42 | 10 | 22.0 | | -65°C to +85°C | CK66B | CK66C | 2N466 | -20 | 54 | 132 | 44 | 10 | 22.0 | | | CK67B | CK67C | 2N467 | -15 | 108 | 264 | 45 | 10 | 22.0 | | NPN Temperature Range -65°C to +85°C | CK261 | CK262 | _ | 20 | 54 | _ | 44 | 10 | 5.0 | # SINGLE-ENDED AND DOUBLE-ENDED SUBMINS — WELDED CASE SILICON TRANSISTORS | | | | | | | | | A A | | |---|--|--|----------------------------------|--
---|--|--|--|--| | Submin
Single
Ended
Case H | Submin
Double
Ended
Case I | TO-5
Equivalent
Case A | IEBO
Avg.
μΑ | ICBO
Avg.
µA | BVCES
Max.
Volts | hFE
Min. Max | Vsat
Avg.
Volts | Cob
Avg.
pf | fαb
Avg.
mc | | 2N745
2N746
2N747
2N748 | 2N907
2N908
—
— | 2N337
2N338
—
— | 0.002
0.002
0.006
0.006 | 0.002
0.002
0.006
0.006 |
25
30 | 45‡ 150
30‡ 90 | ‡ 75*
‡ 0.4 | 1.4
1.4
4.0
4.0 | 30
45
60
50 | | IFIERS | | | | W. E. | 13 | | | | | | 2N750
2N751 | | = | = | | 50
20 | 4# — | 0.6 | 4.0
7.0 | 40
30 | | JRPOSE | Par de | | | | | | | | | | 2N789
2N790
2N791
2N792
2N793 | 2N902
2N903
2N904
2N905
2N906 | IC | = 10 mA | 0.002
0.002
0.002
0.002
0.002 | | 18† 40
18† 90
36† 88 | 0.7
0.7
0.7
0.7
0.7
0.7
VCE = 6V | mA | 6.0
8.0
11.0
8.0
13.0 | | | Single Ended Case H 2N745 2N746 2N747 2N748 IFIERS 2N750 2N751 JRPOSE 2N789 2N790 2N791 2N792 2N793 | Single Ended Case H 2N745 2N745 2N907 2N746 2N908 2N747 2N748 | Single Ended Case H | Single Ended Case Double Ended Case Ca | Single Ended Case Full Process Factor F | Single Ended Case C | Single Ended Case T0-5 | Single Ended Case Case A | Single Ended Case Couble Ended Case Case A Case A Avg. | ## **SILICON TRANSISTORS** | SWITCHING | | | | | | | | | |---|------------------------------|----------------------------|------------------------|-------------------------------|----------------|-----------------------|-------------------|-------------------------| | PNP
Temperature | Туре | IEO &
ICO
Avg.
μΑ | BVCEO
Max.
Volts | hFI
IC=3.0
VCE=
Min. | mA | Vsat
Max.
Voits | Cob
Avg.
pf | fαb
Avg.
mc | | Range
-65°C to +160°C
CASE A (TO-5) | 2N327A
2N328A□
2N329A□ | 0.005
0.005
0.005 | -40
-35
-30 | 9
18
36 | 22
44
88 | 60*
50*
40* | 70
70
70 | 0.200
0.300
0.500 | | NPN
Temperature
Range | | | | | | | | | | -65°C to +160°C
C A (TO-5) | CK419
CK420
CK421 | 0.005
0.005
.0.005 | 40
35
30 | 9
18
36 | 22
44
88 | 1.2
1.0
0.8 | 6
6 | 30
30
30 | | NPN
Temperature | CK422 | 0.005 | 35 | 9 | 44 | 1.2 | 6 | 30 | | Range
-65°C to +175°C | 2N337□
2N338□ | 0.002
0.002 | = | 20
45 | 55
150 | 1.5
1.5 | 2 2 | 30
45 | | CASE A (TO-5) * Rsat ☐ MIL Types | | | | | | | | 11 | CASE H ## **SILICON TRANSISTORS** | IGH | MA | \mathbf{c} | |-----|--------|--------------| | | TA'A U | | | | | | | PNP | Туре | IEBO
Avg.
μΑ | ICBO
Avg.
µA | BVCEO
Volts | IC=1
VCE
Min. | .0mA | Figure
Avg.
db | Cob
Avg.
pf | fαb
Avg.
kc | |-----------------------------------|------------------|--------------------|--------------------|----------------|---------------------|----------|----------------------|-------------------|-------------------| | Temperature Range -65°C to +160°C | 2N1275
2N1654 | 0.005
0.005 | 0.005
0.005 | -80
-80 | 9 20 | 25
45 | 18
18 | 60
60 | 200
250 | | CASE A (TO-5) | 2N1655
2N1656 | 0.005
0.005 | 0.005 | -125
-125 | 10 20 | 22
45 | 18
18 | 60
60 | 200
250 | #### AVALANCHE MODE | NPN
Temperature | Туре | IEBO
Max.
μΑ | VCB
Min.
Volts | VEB
Min.
Volts | tr
Max.
nsec | |-----------------------|-------|--------------------|----------------------|----------------------|--------------------| | Range -65°C to +160°C | CK273 | 1.0 | 25 | 10 | 5.0 | | CASE A (TO-5) | CK277 | 1.0 | 90 | 10 | 5.0 | #### SMALL SIGNAL | Туре | ICBO
Avg.
µA |
IEBO
Avg.
μΑ | BVCEO
Max.
Volts | | hfe
Max. | hie
μmhos
Avg. | hoe
μmhos
Avg. | Noise
Figure
Avg.
db | Cob
Avg.
pf | fαb
Avg.
mc | |--------|---|---|--|--|-------------|--|---|--|-------------------|-------------------| | 2N1034 | 0.005 | 0.005 | 40 | 9* | 22* | 900 | 15 | 18 | 70 | 0.200 | | 2N1035 | 0.005 | 0.005 | 35 | 18* | 42* | 1700 | 40 | 18 | 70 | 0.300 | | 2N1036 | 0.005 | 0.005 | 30 | 34* | 88* | 2500 | 50 | 18 | 70 | 0.500 | | 2N1037 | 0.005 | 0.005 | 35 | 9* | 42* | 1400 | 20 | 6 | 70 | 0.300 | | 2N1623 | 0.005 | 0.005 | 20 | 9* | 40* | 1000 | 35 | 18 | 70 | 0.300 | | CK474 | 0.005 | 0.005 | 40 | 9* | 22* | 1000 | 7 | 18 | 8 | 20.0 | | CK475 | 0.005 | 0.005 | 35 | 18* | 44* | 1700 | 10 | 18 | 8 | 20.0 | | CK476 | 0.005 | 0.005 | 30 | 36* | 88* | 1700 | 10 | 18 | 8 | 20.0 | | CK477 | 0.005 | 0.005 | 35 | 9* | 44* | 2500 | 10 | 8 | 8 | 20.0 | | 2N332□ | 0.002 | 0.002 | _ | 9** | 20** | 50 | 0.5‡ | 20 | 7 | 6.0 | | 2N333□ | 0.002 | 0.002 | - | 18** | 40** | 50 | 0.5‡ | 20 | 7 | 8.0 | | 2N334□ | | 0.002 | - | 18** | 90** | 50 | 0.5‡ | 20 | 7 | 11.0 | | 2N335□ | _ | 0.002 | _ | 36** | 88 ** | 50 | 0.5‡ | 20 | 7 | 8.0 | | 2N336□ | - 1 | 0.002 | - | 78** | 330 ** | 50 | 0.5‡ | 20 | 7 | 13.0 | | | 2N1034
2N1035
2N1036
2N1037
2N1623
CK474
CK475
CK476
CK477
2N332 2N333 2N334 2N335 | Type Avg. 2N1034 0.005 2N1035 0.005 2N1036 0.005 2N1037 0.005 2N1623 0.005 CK474 0.005 CK475 0.005 CK476 0.005 CK477 0.005 2N332 0.002 2N333 0.002 2N334 0.002 2N335 0.002 | Type Avg. μA | Type Avg. Avg. Avg. Wax. Volts 2N1034 0.005 0.005 40 2N1035 0.005 0.005 35 2N1036 0.005 0.005 35 2N1037 0.005 0.005 35 2N1623 0.005 0.005 20 CK474 0.005 0.005 40 CK475 0.005 0.005 35 CK476 0.005 0.005 35 CK477 0.005 0.005 35 2N332□ 0.002 0.002 □ 2N333□ 0.002 0.002 □ 2N333□ □ 0.002 0.002 □ 2N335□ □ 0.002 □ | Type | Type Avg. Avg. Wax. Volts Min. hfe Max. 2N1034 0.005 0.005 40 9* 22* 2N1035 0.005 0.005 35 18* 42* 2N1037 0.005 0.005 35 9* 42* 2N1623 0.005 0.005 20 9* 40* CK474 0.005 0.005 40 9* 22* CK475 0.005 0.005 35 18* 44* CK476 0.005 0.005 35 18* 44* 2N332□ 0.002 0.005 35 9* 44* 2N333□ 0.002 0.002 □ 9** 20** 2N333□ 0.002 0.002 □ 9** 20** 2N333□ 0.002 0.002 □ 18** 40** 2N335□ □ 0.002 □ 0.002 □ 18** 90** 2N335□ □ 0.002 □ 36** 88** | Type Avg. μA Avg. Wax. Volts Min. hfe Max. Avg. 2N1034 0.005 0.005 40 9* 22* 900 2N1035 0.005 0.005 35 18* 42* 1700 2N1036 0.005 0.005 35 9* 42* 1400 2N1037 0.005 0.005 20 9* 40* 1000 CK474 0.005 0.005 40 9* 22* 1000 CK475 0.005 0.005 35 18* 44* 1700 CK476 0.005 0.005 35 18* 44* 1700 CK477 0.005 0.005 30 36* 88* 1700 CK477 0.005 0.005 35 9* 44* 2500 2N332□ 0.002 0.002 - 9** 20** 50 2N333□ 0.002 0.002 - 18** 40** 50 2N335□ - 0.002 - 36** 88** 50 | Type Avg. μA Avg. Wolts Min. hfe Max. μmhos Avg. 2N1034 0.005 0.005 40 9* 22* 900 15 2N1035 0.005 0.005 35 18* 42* 1700 40 2N1036 0.005 0.005 30 34* 88* 2500 50 2N1037 0.005 0.005 35 9* 42* 1400 20 2N1623 0.005 0.005 20 9* 40* 1000 35 CK474 0.005 0.005 40 9* 22* 1000 7 CK475 0.005 0.005 35 18* 44* 1700 10 CK476 0.005 0.005 35 18* 44* 1700 10 CK477 0.005 0.005 35 9* 44* 2500 10 2N332□ 0.002 0.002 — 9** 20** 50 0.5‡ 2N333□ 0.002 0.002 — 18** 40** 50 0.5‡ 2N335□ — 0.002 — 18** 90** 50 0.5‡ 2N335□ — 0.002 — 36** 88** 50 0.5‡ | Type | Type Avg. | *VCE = 6V IC = 1.0 mA f = 1 kc MIL Types $\begin{array}{ll} ^{**}\text{VCE} = 5\text{V} \\ \text{IC} &= 1\text{ mA} \\ \text{f} &= 1\text{ kc} \end{array}$ BVCER Max. †IC = 1.0A VCE = 15V ‡hob Avg. #### HIGH POWER | NPN | Туре | Volts | Volts | Volts | Min. | | Max. | mc | |--------------------|------------------|---------------------------|---------------------------|------------|-----------------------------|----------------------|---------------------------|------------| | Temperature | 2N389 | 60 | 10 | 3.5 | 12† | | 60† | - | | Range | 2N424 | 80 | 10 | 3.5 | 12† | | 60† | _ | | -65°C to +200°C | 2N1657 | 60* | 3 | 1.5 | 15‡ | | - | 10** | | CASE C | 2N1660 | 60 | 10 | 2.5 | 45† | 1 | 135† | 40 | | | 2N1661 | 80 | 10 | 2.5 | 45† | 1 | 135† | 40 | | | 2N1662 | 100 | 10 | 2.5 | 45† | 1 | 135† | 40 | | | | BVCER | BVEBO | ICER | Vsat | | hFE
= 1A | | | | Туре | Max.
Volts | Max.
Volts | Avg. | Avg.
Volts | | E=15V
Max. | Avg.
mc | | NPN | Type 2N1894 | Max. | Max. | Avg. | Avg. | VCI | E=15V | Avg. | | NPN
Temperature | | Max.
Volts | Max.
Volts | Avg.
mA | Avg.
Volts | Min. | E=15V
Max. | Avg. | | | 2N1894 | Max.
Volts | Max.
Volts | Avg.
mA | Avg.
Volts | Min. | E=15V
Max. | Avg. | | Temperature | 2N1894
2N1895 | Max.
Volts
60
80 | Max.
Volts
10
10 | 1.0
1.0 | Avg.
Volts
3.5
3.5 | Min. VCI
12
12 | E=15V
Max.
60
60 | Avg. mc | BVEBO Max. Vsat Avg. #### **MEDIUM POWER** *BVCES | | Туре | ICBO
Avg.
µA | IEBO
Max.
μΑ | BVCEO
Max.
Volts | hF
Min. | E
Max. | Noise
Figure
Avg.
db | Cob
Avg.
pf | fαb
Avg.
mc | |-----------------|---------|--------------------|--------------------|------------------------|------------|-----------|-------------------------------|-------------------|-------------------| | NPN | 2N497 | 10** | | 60 | 12 | 36 | | | - | | Temperature | 2N498 | 10** | _ | 100 | 12 | 36 | _ | _ | _ | | Range | 2N656 | 10** | _ | 60 | 30 | 90 | _ | _ | _ | | -65°C to +200°C | 2N657 | 10** | _ | 100 | 30 | 90 | _ | _ | _ | | CASE B (TO-5) | ** Max. | | | | | | | | 12 | **‡VCE** = 5.0V CASE C CASE E # RAYTHEON CIRCUIT PAKS # Pre-Packaged to Your Specifications... Next time your system design calls for modular subcircuits, make it a point to check Raytheon Circuit-Paks. Pre-packaged to your special requirements, Circuit-Paks have provided the economical, reliable answer to a host of circuit problems. More than 740 different Circuit-Pak configurations have been produced by Raytheon. In many of these, we have provided our customers with technical aid from initial
design to final production. There is a good chance that an in-stock Circuit-Pak module could do just the job you want. If not, we would be pleased to have the opportunity of providing a unit to your specifications. Standard or special, you can be sure Circuit-Pak prices are quite reasonable. Circuit-Paks are composed of selected matched components. Our know-how allows us to perform the matching operation most skillfully — and economically. Reliability of Circuit-Paks is assured by Raytheon's long experience with high temperature epoxy molding . . . ruggedized component packaging for maximum shock resistance . . . precision welding techniques . . . more uniform temperature control through utilization of the encapsulation as a heat sink . . . and many other features. And here's another benefit from Circuit-Paks: They can be made even more compact when Raytheon subminiature transistors are incorporated into the design. Your nearest Raytheon Semiconductor Sales Office would be pleased to have the opportunity to discuss your Circuit-Pak requirements — as well as provide complete details on these modules. We also have a Circuit-Pak brochure, and it's yours for the asking. ## **GERMANIUM TRANSISTORS** | COMPUTER SWITCHING | | | | | | | | | |--|------------------|-----------------------|-------------------|--------------------------|--------------------------|----------------------|--|--| | | Туре | BVPT
Min.
Volts | fαb
Min.
mc | hFE ₁
Min. | hFE ₂
Min. | Rsat
Max.
ohms | Applications | | | NPN | 2N388 | 20 | 5.0 | 60 | 30 | | Medium Current | | | Temperature | 2N438A | 25 | 2.5 | 20 | _ | 5.0 | High Frequency | | | Range | 2N439A | 20 | 5.0 | 30 | | 5.0 | High Gain | | | -65°C to +100°C | 2N440A | 15 | 10.0 | 40 | _ | 5.0 | Switches | | | CASE A (TO-5) | 2N1302 | 25 | 3.0 | 20 | 10 | 5.0 | | | | | 2N1304 | 20 | 5.0 | 40 | 15 | 5.0 | | | | | 2N1306 | 15 | 10.0 | 60 | 20 | 5.0 | | | | | 2N1308 | 15 | 15.0 | 80 | 20 | 5.0 | | | | | 2N1605 | 24 | 4.0 | 40 | 24 | 5.0 | | | | PNP | 2N658 | -24 | 2.5 | 25 | 15* | 2.1 | 1 Amp | | | Temperature | 2N659 | -20 | 5.0 | 40 | 30* | 1.6 | High Frequency | | | Range | 2N660 | -16 | 10.0 | 60 | 40** | 1.3 | High Gain Switches | | | -65°C to +100°C | 2N661 | -14 | 15.0 | 80 | 55** | 1.3 | | | | CASE A (TO-5) | 2N662 | -16 | 4.0 | 30 | 18* | 1.6 | | | | PNP | 2N395 | -15 | 3.0 | 20 | 10 | 3.2 | Medium Current | | | Temperature | 2N396 | -20 | 5.0 | 30 | 15 | 2.1 | High Frequency | | | Range | 2N396A□ | -20 | 5.0 | 30 | 15 | 2.1 | | | | -65°C to +100°C | 2N397 | -15 | 10.0 | 40 | 20 | 1.6 | | | | CASE A (TO-5) | 2N404□ | -24 | 4.0 | 30 | 24 | - | | | | | 2N404A | -35 | 4.0 | 30 | 24 | - | | | | | 2N425□ | -30 | 2.5 | 20 | 10 | 3.2 | | | | | 2N426□ | -25 | 3.0 | 30 | 10 | 3.2 | | | | | 2N427□ | -20 | 5.0 | 40 | 15 | 2.1 | | | | | 2N428□ | -15 | 10.0 | 60 | 20 | 1.6 | | | | The state of s | 2N582 | -14 | 14.0 | 40 | _ | 1.0 | | | | | 2N1017
2N1303 | -12
25 | 15.0
3.0 | 70
20 | 20
10 | 1.3 | | | | | 2N1303
2N1305 | 20 | 5.0 | 40 | 15 | 0.2‡
0.2‡ | STATE OF THE | | | | 2N1303 | 15 | 10.0 | 60 | 20 | 0.2‡ | | | | | 2N1309 | 15 | 15.0 | 80 | 20 | 0.2‡ | GRANT MANUSCON | | | ☐ MIL Types | *Ic = 200mA | | **Ic = 400 | mA | ‡Vcc | e (sat) | | | | AUDIO CIRCUI | AUDIO CIRCUITS — ENTERTAINMENT | | | | | | | | | |------------------|--------------------------------|-------------------------|------------------|-------------------------------|---------------------------------------|---------------------------------|---------------------------------------|--------------------|--| | | Туре | Supply
Max.
Volts | Circuit
Usage | Class A
Gain
Min.
db | Amplifiers
Distortion
Min.
% | Class B /
Gain
Min.
db | Amplifiers
Distortion
Min.
% | hFE ▲
Min. Max. | | | PNP, AUDIO TYPES | 2N359 | -9 | Output | 37* | 5* | 30† | 8† | 100 — 300 | | | Temperature | 2N360 | -12 | Output | 34* | 5* | 27† | 8† | 50 — 150 | | | Range | 2N361 | -18 | Output | 30* | 5* | 24† | 8† | 25 — 75 | | | -65°C to +85°C | 2N362 | -9 | Driver | 42 | | _ | | 50 — 150 ▽ | | | CASE A (TO-5) | 2N363 | -15 | Driver | 40 | | _ | | 25 — 75 | | | | 2N631 | -9 | Output | 35** | 8** | - | | 100 — 300 | | | | 2N632 | -12 | Output | - | _ | 25‡ | 8‡ | 50 — 150 | | | | 2N633 | -18 | Output | - | - | 25‡ | 8‡ | 25 — 75 | | | | *Po = 50
**Po = 30 | | | o = 450 mW
o = 150 mW | | | 1V, Ic = 150 | Measurements
mA | | | AUDIO CIRCUITS — ENTERTAINMENT | | | | | | | | | |--------------------------------|-------|-------------------------|------------------|-------------------|--------------------------------|-----------------------------|--|--| | | Туре | Supply
Max.
Volts | Circuit
Usage | Cob
Max.
pf | Max.
Gain
455 Kc
Avg. | Conv.
Gain
Avg.
db | | | | PNP, RF TYPES | 2N481 | -12 | Oscillator | 20 | | | | | | Temperature | 2N482 | -12 | IF | 12±2 | 31 | _ | | | | Range | 2N483 | -12 | IF | 12±2 | 35 | _ | | | | -65°C to +85°C | 2N484 | -12 | IF | 12±2 | 39 | Ξ | | | | CASE A (TO-5) | 2N485 | -12 | Converter | 20 | _ | 28 | | | | | 2N486 | -12 | Converter | 20 | | 30 | | | CASE A ## **GERMANIUM TRANSISTORS** | INDUSTRIAL | SWITCHING | |------------|-----------| |------------|-----------| | | Туре | BVPT
Min. | hFE _I
Min. | hFE₂*
Min. | ICBO
Max.
µA | Applications | |---|--------------------------------------|--------------------------|--------------------------|----------------------|----------------------------|------------------------------------| | Temperature Range -65°C to +100°C CASE A (TO-5) *Ic = 200mA | 2N1954
2N1955
2N1956
2N1957 | -30
-30
-45
-60 | 30
50
30
30 | 22
35
22
22 | 20
20
20
20
20 | Low Frequency
High Power Switch | #### GENERAL PURPOSE — AUDIO | | Туре |
BVCEO
Min.
Volts | hfe*
Min. | Power Gain
Class A
Avg.
db | ICO
Max.
μΑ | Noise Figure
Max. **
db | |--------------------|-------------------|------------------------|--------------|-------------------------------------|-------------------|-------------------------------| | PNP | 2N422 | -20 | 25 | 38 | 15 | 6.5 | | Temperature | 2N464□ | -40 | 14 | 40 | 15 | 22.0 | | Range | 2N465□ | -30 | 27 | 42 | 15 | 22.0 | | -65°C to +100°C | 2N466□ | -20 | 56 | 42 | 15 | 22.0 | | CASE A (TO-5) | 2N467□ | -15 | 112 | 43 | 15 | 22.0 | | ☐ MIL Types *Vce = | = 6V. lc = 1mA ** | Vca-25V Ic-05 mA | | | | | #### GENERAL PURPOSE — RADIO FREQUENCY | | Туре | BVCEO
Min.
Volts | fαb
Min.
mc | hfe*
Min. | Cob
f=1mc
Max.
pf | rb"
Max.
ohms | |-----------------------|------------------|------------------------|-------------------|--------------|----------------------------|---------------------| | PNP
Temperature | 2N413
2N414 | -18
-15 | 2 3 | 20
30 | 20
20 | 100
120 | | Range -65°C to +100°C | 2N416□
2N417□ | -12
-10 | 5
15 | 50 | 20 20 | 140 | | CASE A (TO-5) | | | | | 20 | . 100 | #### ☐ MIL Types *Vce = 6V, Ic = 1mA #### POWER | | | VCB
Max.
Vdc | VCE
Max.
Vdc | VEB
Max.
Vdc | Ic
Max.
amps. | Dissipation watts | hFE
Min. | |--------------------------|----------------|--------------------|--------------------|--------------------|---------------------|-------------------|-------------| | PNP
Temperature Range | 2N156
2N158 | -30 | -30 | -15 | 3 | 20 | 25 | | -65°C to +85°C | 2N158A | -60
-80 | -60
-60 | -30
-30 | 3 3 | 20 20 | 21 21 | | CASE D | | | | | | | | The Following Types Are Similar To 2N158 Except For Collector Voltage Characteristics: | | | BVCES
@ Ic = 5.0mAdc
Min. VCE | BVCBO
@ Ic = 5.0mAdc
Min. VCB | VBE @ Ic = 500mA VCE = -2V Max, Limit | |---|---|-------------------------------------|-------------------------------------|---------------------------------------| | | CK311* | 80 Vdc | Manager - Manager | 1.05 Vdc | | | CK312* | 100 Vdc | | 1.15 Vdc | | | CK313* | 120 Vdc | | 1.25 Vdc | | | CK314* | 150 Vdc | | 1.35 Vdc | | | CK315* | | 200 Vdc | 0.95 Vdc | | *CK311 through CK3
designated LT-11 thro | 15 were formerly
ough LT-15 respecti | ☐ MIL Types vely. | | | ## **GERMANIUM EPITAXIAL MESA TRANSISTORS** | And the second second | | | | | | | | |-----------------------|------------|-------------------|-----------------------|-------------------|------------------------|------------------------|------------------------| | ULTRA HIGH | SPEED COMP | UTER TYPE | S | | | | | | PNP | Туре | ICO
Avg.
µA | Vsat
Avg.
Volts | fαb
Avg.
mc | BVCBO
Max.
Volts | BVEBO
Max.
Volts | BVCES
Max.
Volts | | Temperature | 2N705 | 0.15 | 0.125 | 300 | -15 | -3.5 | -15 | | Range | 2N705A | 0.15 | 0.125 | | -15 | -3.5 | -15 | | -65°C to +100°C | 2N710 | 0.15 | 0.125 | 300 | -15 | -2.0 | -15 | | C/ 3 (TO-18) | 2N710A | 0.15 | 0.125 | | -15 | -2.0 | -15 | | | 2N711 | 0.15 | 0.125 | 300 | -12 | -1.0 | -12 | | | 2N711A | 0.15 | 0.125 | | -15 | -1.5 | -14 | | | 2N781 | 0.15 | 0.125 | 100-00 | -15 | -2.5 | -15 | | | 2N782 | 0.15 | 0.125 | | -12 | -1.0 | -12 | | | 1 2N828 | 0.15 | 0.125 | | -15 | -2.5 | -15 | | | | | | | | | 1E | # RELIABILITY AND # pathways to peak performance Dependable performance — it's easy to say, difficulto achieve. Stringent production procedures . . . frequent quality control checks during manufacturing . . . new and efficient equipment . . . well-trained personnel — these are among the techniques employed by Raytheon Semiconductor to obtain product dependability. But we go much further through Raytheon's Reliability Assurance Program. This all-inclusive reliability program, which has been in operation for a number of years, was developed for one specific purpose — to insure the reliable performance of **our** products in **your** applications. # QUALITY CONTROL... Assurance Program is the considerable data generated on the reliability of our devices. This data, as well as much other valuable information, is now available to you through our series of Quality & Reliability Bulletins. These Bulletins have been recognized by the electronic industry as representing the most comprehensive guide to semiconductor reliability published to date. Not only do the Bulletins provide information on the broad field of reliability, but they contain a wealth of data on the reliability of specific semiconductor devices and families of devices. The Bulletins can help you build semiconductor reliability into your products economically. For free copies of these important bulletins, simply contact your nearest Raytheon Semiconductor Sales Office. The publication of these Bulletins by our Quality & Reliability Department represents a major step forward in the establishment of quality standards in the semi-conductor industry. Still, the Quality & Reliability Department has an even more important job: making certain that all our products consistently meet your specifications. This is a daily job for our Quality & Reliability Department . . . a job that never ends. Because of this, you can have complete assurance that even with the present high reliability levels of our devices, strong emphasis on this vital area will continue at Raytheon. This equipment is used for recording on punch cards the variables readings on ten parameters. Punch cards with reliability data are sorted by machine. Additional equipment being utilized by Raytheon Semiconductor for recording reliability data on punch cards. ### 13 SPECIAL TESTS OFFERED BY RAYTHEON SEMICONDUCTOR While all Raytheon transistors, diodes and rectifiers undergo exhaustive testing as standard procedure, there are occasions when our customers need special testing of devices to meet a particular specification requirement. To meet this need, Raytheon Semiconductor Division maintains two fully-equipped environmental testing laboratories. The following are some of the extra tests that we offer, many of which are performed in the environmental laboratories: Even without the added cost of special testing, Raytheon Semiconductor Division can help you obtain all-important quality assurance. One method is through our free consultation service, by which we aid you to adapt the results of our tandard testing to your special applications. Another way is by using our great backlog of data on the reliability of our devices. There is a good chance that this data file contains just the information you require. As another of our standard services, each and every outgoing shipment from our plants is subjected to the exclusive - 1. High Temperature - 2. Low Temperature - 3. Temperature Shocks - 4. Leak Detection - 5. Moisture Resistance - 6. Mechanical Shock - 7. Mechanical Vibration - 8. High Altitude - 9. Centrifuge - 10. Lead Fatigue - 11. Salt Spray - 12. Life Evaluation - 13. Special Processing or Screening Raytheon "Shipping Audit." Large or small, these shipments undergo a thorough quality control inspection — completely apart from the regular quality control functions of our manufacturing departments — to assure that reliability is truly "built-in" to Raytheon devices. Such is that broad scope of our testing capabilities. Whatever your specification requirement, you can depend on Raytheon Semiconductor Division to provide just the right devices. ## **MILITARY TYPES** Whatever your requirements for military types of semiconductors, you'll find a big selection at Raytheon. Silicon transistors . . . germanium transistors . . . gold bonded or point contact diodes . . . diffused junction silicon rectifiers — Raytheon gives you a choice of types to give you utmost latitude in circuit design and component procurement. All of these Raytheon Semiconductor Products are designed to meet Military Specifications. | | | NPN SILICON | TRANSISTORS | | | |------|--------|-------------------|-------------|---------|-----------------| | NAVY | 2N332 | MIL-T-19500/37A | NAVY | 2N335 | MIL-T-19500/37A | | NAVY | 2N333 | MIL-T-19500/37A | NAVY | 2N337 | MIL-S-19500/69C | | NAVY | 2N334 | MIL-T-19500/37A | NAVY | 2N338 | MIL-S-19500/69C | | | | | | | | | SIGC | 2N328A | MIL-S-19500/110 | SIGC | 2N329A | MIL-S-19500/111 | | | | (Amend. 1) | | | (Amend. 1) | | | | DDES | | | | | JAN | 1N270 | MIL-E-1/992A | JAN | 1N277 | MIL-E-1/993A | | JAN | 1N276 | MIL-S-19500/192 | JAN | 1N281 | MIL-E-1/961 | | | | PNP GERMANIUM | TRANSISTO | RS | | | NAVY | 2N396A | MIL-S-19500/64A | SIGC | 2N427 | MIL-T-19500/43A | | JAN | 2N396A | MIL-S-19500/64B | SIGC | 2N428 | MIL-T-19500/44A | | USAF | 2N404 | MIL-T-19500/20 | JAN | 2N428 | MIL-S-19500/44B | | SIGC | 2N416 | MIL-T-19500/56A | SIGC | 2N464 | MIL-T-19500/49B | | SIGC | 2N417 | MIL-T-19500/57A | SIGC | 2N465 | MIL-T-19500/50A | | NAVY | 2N422 | MIL-T-19500/66A | SIGC | 2N466 | MIL-T-19500/51A | | SIGC | 2N425 | MIL-T-19500/41A | JAN | 2N466 | MIL-S-19500/51C | | SIGC | 2N426 | MIL-T-19500/42A | SIGC | 2N467 | MIL-T-19500/52B | | | | GERMANIUM POINT | CONTACT DI | ODES | | | JAN | 1N126A | MIL-E-1/156C | JAN | 1N128 | MIL-E-1/158B | | JAN | 1N127A | MIL-E-1/157C | JAN | 1N198 | MIL-E-1/700 | | | | DIFFUSED JUNCTION | SILICON DI | ODES | | | JAN | 1N457 | MIL-S-19500/193 | USAF | 1N646 | MIL-E-1/1143 | | JAN | 1N458 | MIL-S-19500/193 | USAF | 1N647 | MIL-E-1/1143 | | JAN | 1N459 | MIL-S-19500/193 | USAF | 1N648 | MIL-E-1/1143 | | USAF | 1N645 | MIL-E-1/1143 | USAF | 1N649 | MIL-E-1/1143 | | | | DIFFUSED JUNCTION | SILICON REC | TIFIERS | | | JAN | 1N253 | MIL-E-1/1024A | JAN | 1N540 | MIL-E-1/1085A | | JAN | 1N254 | MIL-E-1/989B | JAN | 1N547 | MIL-E-1/1083A | | JAN | 1N255 | MIL-E-1/990B | NAVY | 1N1124A | MIL-S-19500/104 | | JAN | 1N256 | MIL-E-1/991B | NAVY | 1N1126A | MIL-S-19500/104 | | JAN | 1N538 | MIL-E-1/1084A | NAVY | 1N1128A
 MIL-S-19500/104 | | | | | | | | #### RAYTHEON COMPANY #### SEMICONDUCTOR DIVISION - BOSTON 900 Chelmsford Street, Lowell, Mass. Dial 452-8962 - CHICAGO 9501 Grand Avenue, Franklin Park, III. NAtional 5-4000 - DALLAS 3511 Hall Street, Dallas, Texas LAkeside 6-7921 - DAYTON 333 W. First Street, Dayton, Ohio BAldwin 3-8128 - DETROIT - New Center Bldg., 7430 Second Ave., Detroit, Mich. TRinity 3-5330 - LOS ANGELES 225 N. Van Ness Ave., Hawthorne, Calif. PLymouth 7-3151 - MINNEAPOLIS 6121 Excelsior Blvd., Minneapolis, Minn. WEst 9-2988 - NEW YORK CITY 210 Sylvan Avenue, Englewood Cliffs, N.J. LOwell 7-4911 In N.Y. City—Dial—WIsconsin 7-6400 - ORLANDO 1612 E. Colonial Dr., Orlando, Fla. GArden 3-0518 - PHILADELPHIA 1500 Kings Highway E., Haddonfield, N.J. HAzel 8-1800 - SYRACUSE 2360 James Street, Syracuse, N.Y. HOward 3-9141 - SAN FRANCISCO 486 El Camino Real, Redwood City, Calif. EMerson 9-5566 - GOVERNMENT RELATIONS 1000 16th St., N.W., Washington, D.C. MEtropolitan 8-5205 - CANADA Raytheon Canada Ltd., 61 Laurel Street, E. Waterloo, Ontario SHerwood 5-6831