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The Design of Wide-Band Phase Splitting Networks”

W. SARAGAT, SENIOR MEMBER, IRE

Summary—A number of articles and patents dealing with the
properties and design of phase splitting networks, particularly in
conjunction with single sideband modulators, Bave been published
inthe last few years. However, all of them have been restricted either
to particular methods of design or to a particular number of design
parameters. The present paper gives the results of a general in-
vestigation of phase splitfing networks, dealing separately with net-
work analysis, network synthesis and performance curve approx-
imation problems. For the most important types of curve approxima-
tion, Taylor and Tchebycheff approximations, explicit formulas for
any number of design parameters and for any required closeness of
approximation are stated. Alternatives to the classical all-pass lattice
network are given, and dissipation compensated phase shift networks
are developed. In this way, clear and comparatively simple design
instructions for simple as well as for difficult specifications for phase
splitting networks are obtained. Furthermore, it is believed that
some of the theoretical results obtained and methods developed, e.g.,
the Taylor and Tchebycheff approximations, the method of obtaining
dissipation compensation, one of the methods of network synthesis,
and the representation of approximating curves as iterated functions
of two variables, with fractional index of iteration, are novel and of
general theoretical interest.

I. INTRODUCTION

duce constant phase differences over wide fre-

quency bands has frequently been discussed dur-
ing the last decade. Such circuits have chiefly been used
for single sideband modulators for carrier telephony, for
polyphase radio systems, for frequency-shift keying, and
for wide-band circular time bases for cathode-rayv oscillo-
graphs.

It is interesting to note that in three earlyv references
to phase splitting of a signal band no wide-band network
for direct phase splitting is provided, but an auxiliary
two-phase single frequency carrier supply with suita-
ble modulator and demodulator stages is used instead,}
(Wirkler,? Vilbig?). Hartley,* as early as 1925, described
a wide-band phase splitting network consisting of two
filters with different cutoff frequencies and different
numbers of sections. Very simple wide-band phase split-
ting circuits which do not provide a constant amplitude
output have been described by lonnell®* and L.enehan.®

q»[HIE DESIGN of phase splitting circuits to pro-

_* Decimal classification: R246.2 X R143. Original manuscript re-
ceived by the Institute, August 1, 1949,
t Rescarch Laboratories, Telephone Manufacturing Co. Ltd.,
London, England.
! British Patent No. 301,362, dated August 27, 1927.
2% 2] 3§;Iter H. Wirkler, U.S. Patent No. 2,173,145, dated November
. 3 F. Vilbig, “Experimentelle Untersuchung der \'erschiebung
eines theoretisch beliebig grossen Frequenzbandes um einen bestimm-
ten Phasenwinkel,” Telegraphen- Fernsprech- und Funktech., vol. 27,
pp. 560-361; December, 1938.
¢ Ralph V. L. Hartley, U. S. Patent No. 1,666,206, dated Janu-
ary 15, 1925, ’
& M. A. Honnell, “Single-sideband generator,” Electronics, vol. 18,
pp. 166-168; November, 1945.
¢ B. E. Lenehan, “A new single sideband carrier system,” Elec.
Eng., vol. 66, pp. 549-552; June, 1947.

Wide-band phase splitting circuits consisting of two
phase shifting networks with constant output ampli
tudes have been described by Byrne,” Loyet,® Hodg-
son,? Dome,!® Norgaard,' and Luck.'?

Byrne and Loyet give the theoretical and measured
performance of various phase splitting circuits, but they
do not give any design information. llodgson, on the
other hand, discusses design methods in detail. Ilis
main recommendation is to design each phase shift net-
work separately so that its phase shift 8 over the fre-
quency band in question varies linearly with the loga-
rithm of the frequency, say B=A4+A4, log f where 4
and A, are constants. If 4, is made the same for both
networks but 4 is different for each network, say A,
and A,, then the difference of the two phase shifts 8,
and B 1s B1—B2=A,—A,, i.e., a constant, as required.
Dome follows the same general idea, but whereas llodg-
son’s discussion is chiefly in terms of lattice and bridged
T phase shift networks, Dome describes a number of
interesting alternatives to the classical lattice network.
In Hodgson’s patent the individual performances of
the two phase shift networks are specified separately;
Luck discusses the design and performance of a phase
splitting circuit as a whole. This constitutes an impor-
tant step forward. However Luck considers networks
with four design parameters only.

It is the purpose of this paper to investigate phase
splitting networks with anv number of design param-
cters, for any desired bandwidth and for any desired
closeness to the desired ideal performance.” This will
be done in the following order: (1) network analvsis,
(2) performance curve approximation, (3) network svn
thesis. It will be found that it is comparatively casy to
obtain results of general validity and applicabilityv. In
many respects the problems to be solved are similar to
or identical with those encountered in the development
of a comprchensive method and theory of filter design.
However, in the case of phase splitting circuits consist-
ing of constant resistance phase shift circuits the solu-
tion of these problems is easier than in the case of filter
design, because complications due to mismatching do
not arise. I'urthermore, it so happens that in the theor

? John F. Byrne, “Polyphase broadcasting,” Trans. Elec. Eng.

voLsS'E)i, plp.l347—350; July, 1939, § ¢
aul Loyet, “Experimental polyphase broadcasting,” I'roc.

LR.E,, vol. 30, pp. 213-222; \ay, 1932. ¢
]94: K. G. Hodgson, British Patent No. 547,601, dated January 31

1 R. B. Dome, “Wide-banid phase shift networks,” Electronics,
vol. 19, pp. 112-1 15; December, 1946.

' Donald E. Norgaard, “A\ new approach to single sideband,”
QST, vol. 32, pp. 3643; June, 1948.

1 David G. C.” Luck, “Properties of some wide-band phase
s{gk;tmg networks,” Proc. 1.R.E., vol. 37, pp. 147-151; February,

13 Some of the networks obtained as a result of this investigation
form the subject of British Patent Application No. 16698/49.



1950

daf the transformation of elliptic functions, which is ap-
plicable to filter as well as to phase splitting circuit de-
sign, the particular transformations applicable to phase
splitting circuit design are simpler than those applicable
to filter design.

II. THE Basic CIrcuIT

Fig. 1 shows schematically a phase splitting circuit
consisting of two phase shift networks which are paral-
leled at their inputs. At this initial stage of our investiga-
tion the phase shift networks are assumed to be conven-
tional all-pass constant resistance single lattice section
networks with series arm reactances X; and X, and lat-
ticearm reactances — Ro?/ X and — Rq2/ X,, respectively.

PHASE Swiry NeTwoak §

%]
R
R k.
lmJ
INPUT
%]
S
EHiA R,
IEJ

Puase SwirT NETwomx 2.

Fig. 1—Basic phase-splitting circuit.

Then the phase shifts 8, and 3, produced by the net-
works separately are given by

tan 381 = Xi/Ry and tan 18, = X:/R, (N

so that the phase shift difference ¢ =8,—8, is given by
Xl/RO - A’2/1{0

=tany = tan (B, — B,) = — ;
e =B =B = R (X /R

(2)

If Bi—B.=90° y=1. Thus in an ideal 90° phase split-
ting circuit, y should be unity, over a specified frequency
range, or |log y| =o0.

The significance of deviations of y from unity can
only be discussed with reference to a particular applica-
tion of the phase splitting circuit. It is interesting to
consider a single sidcband modulator using a phase
splitting network. If it is assumed that all amplitude
and phase relations are exactly as required (sce Fig. 2),
with the one exception that y is not exactly unity, it can
he shown that the amplitude 4; of the wanted side-
band and the amplitude 4, of the unwanted sideband,
arc given by

(Li)as = 20 logye | Am//lll = 20 logyo sec 46

10 logo (1 4 tan? 34)

(32)
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(Ly)as = 20 logio | A10/Az| = 20 logio cosec 3

10 logie (1 + cot? §8)

(3b)

where 6 is the deviation of the phase difference 81—
from 90°, i.e.,

T

5=ﬂx—ﬁz-"2— 4)

and Ay is the value of 44, for §=0. If y is given, we can
obtain 8 directly from y, by means of

-1 2(y? 1
tan 36 = I or sec? 36 = - (zj—)-
y+ 1 (r+ 12
2(y? 1
cosect 3o = 2PV (5)
Gy = 1J3
PHASE N s (wt-4)
i MobuLATOR §
NETwoRN |
1
nPUT V s Nt suaTIoN [0
v, at v.mn,i uNIY L_—Al.o
[ |
Swry MobvLAToR 2
NETWORK 2
Vosa(ut-p)

Fig. 2—Single sideband modulator using
phase-splitting circuit.

Combining (3a) and (3b) with (5), we can obtain L,
and L, as functions of y. The result has been plotted in
Fig. 3. It is important to note that the transformation
y—(1/y) leaves L, and L, unchanged and transforms &
into —é.

Equation (2) is very similar to an expression occurring
in the evaluation of the insertion loss L of a lattice sec-
tion filter between a source resistance R, and a load
resistance Ry, with series arm reactances X4 and lat-
tice arm reactances Xg. We find

10 l()glo (l + l‘:2)
1+ (Xa/Ro)(X5/Ro) .

Ldb

(6a)

(X4/Ro) — (Xp/Ro)

It is scen by comparing (6b) and (2) that 1/E and y are
formed in the same way from reactances X4, Xg and
X1, X, respectively. This similarity has important con-
sequences for the analysis and synthesis of phase split-
ting networks, and will be made use of in subsequent
sections.

(6b)

I11I. NETWORK ANALYSIS

The object of this section is to find, as a necessary
preparation for network design and synthesis, the gen-
eral characteristics of the function y defined by (2), if y
is obtained from physical networks. Since
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tan iﬁ. — tan 8,

N
l + tan &ﬁ; tan yﬂz

= tan }(B) — B2) =

we start with a discussion of the characteristics of
tan 3B, and tan 38;. From (1) it follows that tan 48, and
tan 18, as functions of the normalized frequency x have
to satisfy Foster's reactance theorem; for instance, they
have to be odd rational functions of x; all poles and
zeros are simple and occur at real frequencies; zeros and
poles are alternating; at x=0 and x = « no other values
than 0 or « are permitted. The degrees of denominator
and numerator of each expression differ by one.

y=tan 3(8,—B:) is a function of a less restricted char-
acter. Like tan 38, and tan }8; it is an odd rational func-
tion of x which is zero or infinity at zero and infinite
frequency. But its zeros and poles need not alternate
or occur at real frequencies, and the degree of denomi-
nator and numerator can differ widely.

This follows directly from (7) and is, because of (6b),
equally valid for ¥ and 1/E. Dealing now with y only,
since it is required that y is approximately equal to
unity over a band from, say, x=+vk to x=1//k, it is
obviously not permissible to have any poles or zeros of y
within this band. On the other hand, we have seen that
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at x=0 and x= o, y will be 0 or e, and therefore’y
will tend to deviate more and more from unity for very
large and very small values of x. It seems plausible,
therefore, to recommend (see, e.g., Ilodgson®) that no
poles or zeros should occur at real x values except at 0
and o, as such poles or zeros would tend to increase the
deviation of y from unity; the poles or zeros at 0 and «
should be of the first degree. Then the degreesof numer-
ator and denominator must differ by one. \We shall sce
in the next section that Taylor and Tchebycheff ap-
proximations lead to expressions which are in agreement

with this recommendation.
In what follows we shall assume that at x=0 we have
=0." Then y will be of the form
(3 4+ (= + e -

y=Hlx——
(2" + d\)(x* + dg?) -

(x2 + ¢.?)

where b—a =0 or 1, and where the constants c,?, ¢;?

and d,?, d,* and I/ are real and positive. We shall

denote by » the highest degree of x occurring in y, and
1 This assumption entails no loss of generality as the only other

possible choice is y= = at x =0. However, in this case we would have

1/y=0at x=0, and then we could apply the results of the following
discussion to 1/y which approximates unity as closely as y does.
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Fig. 3—Output (wanted and unwanted sideband) as function of deviation from 90° phase difference.
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we shall see later that the order of approximation can be
denoted by the same number n. Equation (8a) can also
be written in the form

Ao+ Ax® + - -+ + Apex?e

8b
1 4+ Byx? + - - - + Bppx?® e

y==

where all A's and B’s are real. An important case arises
when y as a function of log x is symmetrical about
x=1, i.e, log x=0. Then the transformation x—(1/x)
leads to y—(1/y) if n is odd, but it leaves y unchanged
if n is even. Expressions for y, when y, is symmetrical
are listed below for n-values from 1 to 6.

Hx a+ x?
= x; = ; = x————-;
H 72 14+ «2 2 1+ ax?
Hx(1 + x?)
Vo=

1+ ax’)(l + i x’)
a

(a + x3)(b + x?)
Vs = X — == § ) .

(14 ax?) (1 4 bx?) [

(8¢)

1
Hx(1 + ax’)(l + — x"‘)
a
 —

1
(14 23)(1 + bx’)(l + 'y x?>

—

IV. APPROXIMATION OF THE REQUIRED
PERFORMANCE CURVE

In this section we shall discuss methods for finding
such values for the constants in the expressions for y
((8a), (8b), or (8¢)) that y becomes a good approxima-

tion to unity in the range x = vk to x =1/+/k. If another
value for y, say y=y,, is required, y has to be replaced
in the discussion that follows by y/y,. We shall start
with Taylor and Tchebycheff approximations, for there
it is possible to go beyond a recommendation of meth-
ods of approximation to a statement of explicit formulas
which give the constants in terms of k, i.e., of the
range of x.

1. Taylor Approximations

A Taylor approximation of the nth order is character-
ized by the fact that there are n design parameters
which have been so chosen that for a specified value of
%, say x=xo, y itself and the first (n—1) differential
coefficients d"y/dx" for r=1, 2 - - - (n—1) are the same
for the required curve and the approximating curve.
Thus the higher # is, the more closely the approximat-
ing curve approximates the required one.

If we assume that xo=1, then the Taylor approxima-
tion of the nth order is given by

¥» = tanh [n tanh—! x] (9a)
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By writing (9a) in the form

A+ 2)"=(1 =2
T+ o+ (-
we see that the highest degree of x occurring in y, is n

and that y, is an odd rational function of x, symmetri-
cal about x=1 against a logarithmic frequency scale.

(9b)
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Fig. 4 (a)—Taylor approximations.

By writing it in the form
1 — ya I — x\»
L+ ym <1 + x)
we can easily prove (putting y.=1+4¢ and x=1+4)

that the first n—1 differential coefficients at x=1 are
zero, as required for a Taylor approximation to y=1.

(9¢)

It may be convenient to list y, for n=1,2 - - . 6.
2x (3 + x?)
= X, — : = —— ;
o Py YT T e
4x(1 + x?) (5 + 1022 4+ x4)
W= T i e ——————— b (9d)
1 + 6x2 4+ x* 1 4+ 10x2 4 5x*
2x(3 + 1022 4 3x4)
yu — ——

14 1522 + 1526 4 0

These curves are plotted in Fig. 4(a) on log-log paper,
for an x range from x=v/£=+/0.003 to x=1//%, i.e.,
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It will be sec from (9b) that if x is replaced by 1/x
¥» remains unchanged for even » values, and is replaced

0.003. This corresponds, for instance, to a fre-
quency range from 30 cps to 10 kc.

for &
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by 1/yn for odd values of ». The deviation of |log ¥.|
from 0 increases with |log x|. If the limits of the x
range are denoted as v/k and 1/+/k and the limits of the
y range as /A and 1/+/X, then X as a function of & is
given by

VA = tanh [n tanh—! /%], (9e)

which, as far as the functional relation is concerned, is
similar to (9a). If we write (9¢) in the form

1/tanh! /X = i (1/tanh—! /%) (9f)
n

we see that A as a function of k can be represented as a
straight line with slope 1/n through the origin of the
co-ordinate system, for any » value, if we use functional
scales defined by the 1/tanh=!'4/" function for X and k.
This has been done in Fig. 4(b). In view of the func-
tional similarity between (9f) and (9a), Fig. 4(b) also
represents y, as a function of x, in other words, Fig. 4(b)
can he looked upon as showing the same curves as Fig.
4(a). It will be seen that if k is given, |log \| decreases
with increasing #, i.e., the range of y becomes smaller.

For synthesizing networks which have the perform-
ance described by (9a) we must find—as will be ex-
plained in Section V—the values of x at which y=+j.
They are given by

-5+ )]
x =] an[n q m

where m=0,1,2,---,(n — 1).

(9g)

2. Tchebycheff Approximations

A Tchebycheff approximation is characterized by the
fact that the maximum deviation occurring is a mini-
mum. The theory of the transformation of elliptic func-
tions very conveniently describes odd rational functions
of x, symmetrical against a logarithmic x scale about
x=1, which over the range x=+/k to x=1/v/k ap-
proximate y =1, within the limits v/ and 1/+/X, in the
Tchebycheff manner. As stated above, such limits for
y are equivalent to limits Smax and Smin = — Omax fOr the
deviation & of the phase difference ¢ from the require!
value 90°, and tan 48max = (1 — v/A)/(1++/)). Using Cay-
ley’s'® symbols, it can easily be shown that the Tcheby-
cheff approximation of the nth order is given by

Ya/ VA sn(u/M, \)
x/Vk = sn(u, k).

(10a)
(10b)

The highest degree of x occurring in the rational func-
tion defined by (10a) and (10b) is n. Cayley uses the
suffix ‘1" for A and M to indicate that a “sccond trans-

' A. Cayley, “Elliptic Functions,” 2nd ed., Geoige Bell & Sons
London; 1895,  eote '
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formation” from a modulus k to a larger modulus X is
meant. However, in the following discussion it is con-
venient to use in many cases the suffix # to denote the
order of the transformation. Therefore, in order to
avoid confusion, Cayley’s suffix ‘1’ will not be used. For
the purposes of this discussion it is also convenient to
denote X sometimes as k,. In equations (10a) and (10b)
u is an auxiliary variable which is defined by (10b), and
v is defined in terms of u by (10a). & has been defined
above. N and M can bederived from % as follows: K'/K
is a function of k, say K'/K = F(k) known in the theory
of elliptic functions (tabulated for instance by Hay-
ashi®®). A’/A denotes the same function of N so that
A’/A=F(\). X\ can be obtained from & by means of the
relation

VA = FO) = KUK = SRy, (100)
n n

It will be shown that if & is given, llog )\I decreases with
increasing n, i.e., the range of y becomes smaller. Fur-
thermore, K can be found as a function of %, and A as
the same function of A, in Hayashi’s tables. Then M is
given by

M = K/A. (10d)

Fig. § (a)—Tchebycheff approximations.

' K. Hayashi, “Tafeln der Besselschen, Theta, Kugel- und anderer
Funktionen,” Berlin: 1930.
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TABLE Ia
TCHEBYCHEFF APPROXIMATIONS; y AND % AS FUNCTIONS OF x.
LI . ) (10a)
= —> A
v (.u. ’
\—;; = sn(u, k) (10b)
K K
M, = Fa—y
x as a function of =1 +ju, is described by the following table and diagram
= - - —— = ”
¥ 0O- \k VR | 1. 1/\Vk 1/Vk -+ = 7 rlx=ioo
= — — —r———r— = iK' | x=1/vk
" 0---K K K Keev0
— — — —_— e s AK - -=-- ==~ -4 r=1
’ ’ o > ’ _
“ 0 0 iK W K K | 2=0 x=/k
0 l K_’lh
Best form of (10b)
forx=0--- V& x/VE = sn(, k), =0
for x=\"k--- 1/\"% x/VE = 1/dn(, ¥'), = K, o=/ —k?
for x=1/\ k- = /VE = 1/lksn(m, b)), wm =K’
Best form of expression giving y as a function of xif x = \E-- - 1/vE
. A - U
v A 1 L (VE . , s
dn[ dn'('—-rk),)\
Ma x

Thus A=k, can be obtained for any % and n, and, &
being specified, n can be so chosen as to make log VA,
which denotes the maximum deviation of |log y| from
0, as small as required. X\ as a function of % and = is
represented in Fig. 5(b). Since (10c) is of the same form
as (9f) it is again possible to draw the A curves as
straight lines with slope 1/ if linecar scales for K'/K
and A’/A are used. It should be noted that in thecase
of Tchebycheff approximations the curves relating A to
k (Fig. 5b) do not at the same time relate y, to x. It
will be seen that for any given k- and n-values the values
of \ obtained from Fig. 5(b) i.e., for Tchebycheff ap-
proximations are much nearer to 1 than those obtained
from Fig. 4(b), i.e., for Taylor approximations.

¥a as a function of x can be evaluated directly from
(10a) and (10b) by means of tables of elliptic functions,
e.g., Milne-Thomson's'? tables together with Hayashi's
tables. For this purpose, equations (10a) and (10b) can
be modified as shown in Table I(a). The Tchebycheff
approximations for n=1, 2 - . - 6 for an x-range from
Vk to 1/+/k where £=0.003 are shown diagrammati-
cally in Fig. 5(a). For these diagrams the formulas
given in Table I(a) have not been used. Only the x
values at which maxima or minima of y occur and those
at which y=1 have been evaluated numerically, and the

71.. M. Milne-Thomson, “Die elliptischen Funktionen von
Jacobi,” Julius Springer, Berlin; 1931,

curves have been so drawn as to go through these points.
However, for n =4 (see Section VI) a numerical check
for a great number of points has shown very good agree-
ment with the drawn curve. The curves have an oscil-
latory behavior, all maxima and minima occur at the
y-values 1/+/X and v/ respectively, the value of A de-
pending on the n value and the & value under considera-
tion. For even n values there are 4n maxima, }(n—2)
minima, two intersections with the line y=+/X and n
intersections with the line y=1. For odd » values there
are $(n—1) minima and }(n—1) maxima, one inter-
section with the line y=v/X, one intersection with the
line y=1/+/X and n intersections with the line y=1.18
In order to be able to plot these characteristic points
of y we must know the values of x at which y,= v, 1
and 1/v/X. On the other hand, in order to be able to
write y, as a rational function of x in the form of equa-
tion (8c) we must know the values of x at which Ya=0
and y,= o and the value of /I in the case of even 2
values (see below). Lastly, in order to synthesize a net-

' It is interesting to note that in the case of filler design a “first
transformation” from a modulus £ to a smaller modulus A has to be
used. This transformation, though similar in man respects to the one
used in our problem, differs from the one dcﬁnc(f'by equations (10a)
and (10b) in so far as it leads to a rational function of x only for odd
n values. For even n values, in order to obtain yasa rationa(funclion
of x, x has, as Darlington has shown, to be defined by a more conmpli-
cated relation between x and u (see reference in footnote 27).
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TABLE Ib
TCHEBYCIHEFF APPROXIMATIONS; X AS A I'UNCIION OF y.

Yn ( u X)
WA sn M. ’

K’

Yn 5

= l 3 + l, ke,
x=\/ksn ; Mo sn '(\/)\y )\) 729 " %

let Msn! ~}—n-) N) =T, then
/;
VA

= sn(u, k)

vk

g=0,1,2,3--,(n—1)

Yu 7 X
| | K
0 ‘ 0 I\ k sc [2(/ " ’ k]
| .
[
1 K’ A = 1 K’
j j Ik sc[( + Zq) ’ k'] ‘
2 n ( 2 n
R - ‘ ‘
K’ K’
® j | gk sc [(l + 2¢) —» k’] ‘
” n |
_ B | §
~ Y (e ]
J d 2 n b 2 ¥ n ’
1 o
[ V4N K \ knd[Zq ’ k']
‘ n
1 l K+ . ( : ) knd : x k'
| J 2”2 ”"Kz*q)f’

snl1, k)
IC(N, k) = ;;(“ R) ?

This table is given in greater detail in Tables II and III.

work having a performance curve in accordance with y,
we have to find the values of x at which y=4-j. All these
values of x can be found from (10a) and (10b) by first
inverting (10a) to find u as a function of y and then sub-
stituting this expression for « in (10b). However, to
simplify the engincering application of Tchebycheff
approximations, the x values at which y becomes 0, j,
«, —jand VA, 1, 1/+/X, are listed in Tables I, 11, and
I1I. The expressions tabulated are so regular in form
that it is easy, if required, to extend by analogy the
Table to any n value. The value H mentioned above is
given by

o = \/\k/M.. (11)

When dealing with Tchebycheff approximations it is
often convenient to make use of the “index law” which
is valid for these approximations. Let y.(x, k) denote the
nth order approximation to y,=1 over the x range vk
to 1/+/k, and let k, denote the range of variation of

_ K’
\km[m+n) ,w]
”n

1

nd(u, ) = dn(l;rlz)

Yalx, k), .., y, varies between vk, and 1/+/k,. Fur-
thermore, let v,.(ya, k.) denote the mth order ap-
proximation to y» =1 over the y, range vk, o 1,/ vk,,
and let (k.). denote the range of variation of y., i.e.,
¥m varies between V/(k), and 1/4/(k.).. Then
Ym(Vn, k2) C()xlsi(lqretl as a function of x when x varies
from +/k to 1,/v/k is identical with yo(x, k), the pth or-
der approximation to y,=1, over the x range vk to
1/VEk, if p=mn. This can be expressed formally by

P = nm}

p = mn .
By virtue of the index law we can, if we have explored
the case of n=2, apply all results obtained to n=4
=2X2and n=8=2X4. If we have explored »=2 and
n=3, we can combine the results to obtain the cases

n=6=2X3and n=9=3x3. A generalizing interpreta-
tion of the index law will be given in the Appendix.

ym(ym kn) = y,,(x, k ;
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3. Alternative Theory of Tchebycheff Approximations

So far, the theory of Tchebycheff approximations
has been discussed in terms of elliptic functions. This
leads to the most concise and general type of expres-
sions. At the same time it must be realized that many
engineers are unfamiliar with elliptic functions and that
it is sometimes difficult to obtain good tables of elliptic
functions. It is therefore important to note that it is
possible to formulate the approximations purely alge-
braically, without the use of elliptic functions. In prac-
tice, a combination of the two methods of attack, ap-
propriate to the particular case under consideration, is
sometimes the best choice,

Saraga: Wide-Band Phase Splitting Networks
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The algebraic theory for n=2, 4, 8 is very simple in-
deed. Starting with n=2, y.=dsx/(1+x?) leads to the
following relations:

for x=\k and x=1/\"k, y2=Ymin=da\'k/(1 +k);
and fOl' xX= 1, ¥Y2=Y2anax = 1d2-

The condition yminYamez =1 leads to ky=2+/k/(1+k)
and d; = 2/+/k,. With this value for ds, y, is the Tcheby-
cheff approximation of the second order for the range k.
The cases =4 and n=28 can be discussed by applying
the index law. The results are tabulated in Table IV.

TABLE 11
TCHEBYCHEFF APPROXIMATIONS; ¥ FOR y=0, +j, ©, —j.
_— — _ fl SE— e —— ' — — T E— A
n=1 l =2 n=3 In the General Case |
[ x ‘ » ’ - 7x_ B y2 x ¥ l o x - \ In
‘ | —— e ‘
| s /%
‘ . - . N V& 5¢(0) =0 0
o | o VE 3c(0) g 4 FVE 5c(0) =0 | o SRR = 0
| | e e
| 4 = 1
. = iy ’ . _ KI > I KI' kl) >
+j ' +j i j\/kSC( , k) j +j j\/ksc( — Y i l J\/kSC(zn l +j
B - | 1 :
SR e el Frovryeany
Y _ ’ * /L R A 2
, J\/k:c(-—i—;k +j | £ J\/ksc(——xk') |+ J\/Izsc(znl\,k) +
~j B N - ___\__ 3 s ] ,
0 0 JVE sc (il(' k’) -J —7 B : J'\/;-‘C(il\"»k') £ =j
v 4 j\/;sc( ) k') =+4j —j ‘ 2n l
. /T 1ot - 2 E E
Ik sc(K', k') = 0 (_ ' g \ ' i
iVEse( 3Kk | o E 5
wrne) | franieny o
J 4 : JVk sc (z K’,k') I +j
il k’)=—j‘ T l
4 g i VEse(K', K  =m | |
_ — ' |
7 I o R
Vie(lw) | o .
jx/ksc(4h,k i Nk“(_(,,\,,,k,) _;
)
‘ |
FVE sc(0) =0 0 | . ( 4 ., k.) )
) 1 ]\/; sc 3 K’, |
sn(u, k) 3 . ‘ .
L L RS, Y ; ( K',k')=—
sc(u, k) en(a, B) sc(u+ ) JVE sc 3 i+
sc(2K —u, k) =sc(—u, k) = —sc (u, k) _—— _—
_ 5
VE sc(—3— K, k') +
. 1
]\/Esc(g K',k’) —j
JVE s¢(0) =0 0
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TABLE 111
TCHERYCHERF APPROXIMATIONS; X FOR ¥= /A, 1, 1/ V.
- [ |
‘ nal l ‘l n=2 [ ‘ n=23
|
x i b7} ! x Y x ¥s
VEk ‘ min l' x =k nd(0) =\ min v =vk nd(0) =\'k min
] | 1
1 ‘ 1 . ! ! ,
x,=\/kml(—l\",k') 1 B=y knd(ol\',k) 1
|~ [
1/VEk | max ‘
‘ = 2
=\ lemi( K’,/.-’) =1 max =k nd(a—l\',k') max
. 3 3
1/x3=\"k nd (*‘ K’ k') [ 1 1.:\/ind(— K',k') =1 1
{ 4 6
— ‘ |
" 4 i ) | - 4
1/x,=1\ kmi(-i— l\",k’) =1/vk min ‘ 1/x;=\"k nd((—) K’,k’) min
| | | '
Y
_ _ o /=% mi(—»l\", k’) 1
| In the General Case ' — | _
| |
- “ ) 6
l x ¥a ‘ ; V/xy=\ knd <_6A K’ Ie’) =1/VEk ‘ max
. 2, =k nd(0) =vEk min
" T |
| —End( Lk v L |
| ATVER (27. ' ) | | nd(u, ky=1/dn(n, k) =nd(—u, k)
‘ S —— I - nd(u+ 2K, k) =nd(u, k)
‘ nd(K'+u, k'Y =1/[k nd(u, k'
x3=\/i-"'d(2 K',k') | max R, k) =1/ 1k nd(u, )]
2n [
IR
x=\knd (i K’, k’) ‘ 1 |
2n ' ‘
For n=3 the derivation of an expression for y; is less b= \k/a
simple. We start with an expression of the form y; we find
=H.xf(A o+x7)/(Bo+x2.), \\‘hich, in order to be sym- 8 = kfat + 2b/a (13a)
metrical about x =1, simplifies to y=x(a +x?)/(1+ax?). L
Then we ha\fe to’fleterrniney so that, fqr a gi\.'en range . y JE 24 a)\3
k, y behaves ina lcheb_\fhen manner. yis required to be k= of , A2 = a( -].  (13b)
cqual to v\ if x=+/k; furthermore, y has also the I+ 2a 1+ 2a

value 4/\ as a minimum value at an unknown x value,
say x =b. Thercfore

y— VA= [x(u + 22) — VA(1 4 ux?) /(1 + ax?)

must be equal to (x— +k)(x—8)%/(1 +ax?). Comparing
coefficients we obtain three equations:

avA = VE+ 26, a=0b"+ 26k and VA = bR

If we introduce a, a term used by Cayley, by means of

Equations (13a) and (13b) determine a, a and X\ in
terms of £ (X can also he determined by means of tables
of elliptic functions, or by means of a graph like that in
IFig. 5(1))). Then we can find b2= V/A/k. Thus we know
¥ as a function of x and the following details:

y=VA at x=+k and x=bh
y=1U'V\ at =1/+/k and 2=1/b

y=1 at x=1 and x=}(a—1)+v/i(@a—1)2—1.
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TABLE IV
TCHEBYCHEFF APPROXIMATIONS FOR =2, 4, 8; ALGEBRAIC RELATIONS
? x = [F(d/y)]* »n= 1?:1 = [F@/y) ]t »= l‘:y’yz, = [F(ds/y0) |2 »n= l‘_ty;.
Vi I  min
'%:g;/} [d;F(Tt.i ﬂ_— _;;IJMO.ﬁ ) -} R | o
!- _F[dg/F(d.)] ——I F(dJ) | 1 max
[_— F fda/f[d«F(ds)H - F[diF(d)) 1/F(dy) 1
I F(ds) 1 max min
 Hlarlr@l Flara) yrGy !
i Fld:F(dy) ] 1/F(dy) 1 ‘ max
i F{dsF[d/F(dw) ]} 1/F(di/F(dy)] 1"-(;3) N 1 -
%—wl_- o max min 7 min
1/F{dsF[di/F(d) ]} 1/F di/F(dy)] F(dy) - 1
1/F(d:F(dy)) 1/F(dy) 1 max
1/F{d;F[dF(dy) ]} 1/F[dF(dy)] 1/F(ds) 1
—l/F(«h) 1 max min
——1 [F{ds/F|dF(d) ]} Fd.F(dy) ] - 1/F(ds) ) 1 .
el | R
l 1/F{ds/Fdi/F(dy)]} ' F(di/F(ds)} F(ds) 1 o
CowE ”I s | e mn
min: y; = Vs, max:y; = vh min: y, = Vki, max:y = Vi ! min: ys = ks, max: ys = vF

=+ if x=[Fd/i)]t
w=+4j if y2= [F(dc/j)]t'.
=+4j if y=

(F(do/i) )XY, 32 =

x = [Fd/y) ]!

(F@/y))EY, = = [F(d/y) |¥!

2k
hmyy ke

dr = 2/,
F() =4z — /(32)2 — 1

If we replace in the discussion of the case n=3 the
independent variable x by the second-order approxima-
tion y, and k by ks, we obtain a sixth-order approxima-

2V
1+ ks
dc = 2/\/71:

2vEk
14k
ds = 2/vks
1/F(z) = 4z + /(Fs)* — 1

tion, and by repeating this process we obtain a twelfth-
order approximation. If in the discussion of the case
n=3 we replace x by y; and k by ks we obtain the
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ninth-order approximation. For the prime numbers
n=35, 7, 11, - - - etc., however, the algebraic theory
becomes progressively more difficult (see Cayley).

4. Approximation by Other Methods

In most cases the requirements concerning the per-
formance of phase splitting networks can probably he
satisfied by means of Tchebychelf or Taylor approxima-
tions which have been discussed in the preceding section.
Sometimes, however, requirements may be stipulated
for which these types of approximations are not the best
possible solutions. Then other types of approximations
have to be obtained.

If it is required to have an exact phase difference of
90° at n specified values of x, then the parameters of the
function y which satishes these requirements can be
obtained by solving » linear simultaneous equations.
Zobhel" has discussed this method in great detail with
reference to the design of attenuation equalizers and
phase shift networks. The application to the design of
phase splitting networks does not raise any new prob-
lems.

Zobel recommends the use of this method not only in
cases where the performance at a number of points is
specified, but also where a good approximation over a
whole range of x values is required. However, in such
cases Zobel’s method often leads to disappointments (sce
e.g., comments by Saraga?® and Baum?!) and graphical
methods of curve fitting are to be preferred.

A survey of graphical curve fitting methods shows
that they can conveniently he classified as curve summa-
tion or curve shifting and shaping methods (see Sar-
aga?). It is usually necessary to transform the co-
ordinate system in which the required performance
curve and its tolerance band are specified in order to
make the application of these graphical methods pos-
sible. In the summation method, a curve which fits the
tolerance hand is obtained by adding a number of stand-
ard curves in different positions. From these positions
the parameters of the approximating curve can be ob-
tained (for examples, see Laurent,?? Rumpelt,?® Sar-
aga,?® Scowen,* Baum?!). In the shifting and shaping
method which can be used for a limited number (not
more than 4 to 5) of parameters only, one single stand-
ard curve is shifted and shaped by scale changes and

10, J. Zobel, “Distortion correction in electrical circuits with
constant resistance recurrent networks,” Bell Sys. Tech. Jour., vol. 7,
pp. 438-534; July, 1928.

* \V. Saraga, “Attenuation and phase shift equalisers,” Wireless
Eng., vol. 20, pp. 163-181; April, 1943,

% R. F. Baum, “A contribution to the approximation problem,”
Proc. I.R.E,, vol. 36, pp. 863-869; July, 1948.

2 T. Laurent, “New principles for practical computation of filter
attenuation by means of frequency transformation,” Ericsson Tech-
nics, vol. 3, pp. $7-72; 1939,

2 E. Rumpelt, “Schablonenverfahren fuer den Entwurf elek-
trischer Wellenfilter auf der Grundlage der Wellenparameter,” Tele-
graphen Fernsprech. Funk und Fernsch-und Technik, vol. 31, pp. 203-
210; August, 1942,

# F. Scowen, “Electric Wave Filters,” Chapman & Hall Ltd.
London, pp. 72-74; 1945.
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shearing until it fits the required tolerance band (sce
Pyrah,? Truscott,* Saraga®?). The application of these
methods to the specific problems of phase splitting net-
works will not be discussed here.

V. NETWORK SYNTHESIS

At this stage we shall assume that in one way or
another a suitable performance function y(x) has been
determined. The next step is the determination of two
phase shift networks which will produce this function y.
The problem to be solved is to find X,/Ry and X,/R,
when

(,X‘/,Rf) — (X2/Ry)

T+ (X\/R)(Xo/Ro)

is known. As this problem occurs also in the design of
symmetrical filters where (see equation (6b))

' + (X,]/Ro)(.Y[)/Ijo)
(X1/Ro) — (Xu/Ro)

1s given and X,/Ro and Xp/Ro have to be found as
physically possible reactances, we can apply its solution
toour problem. Darlington?? gives the following instruc-
tions for determining the reactances (modified here in
accordance with the symbols used in this paper):-
\Vrite y in the form y=xB’/P where B’ and P are poly-
nomials in x% Then express P+pB’ in the form
(Pr+pB)) (P2~ pB,) where Py, By, Ps, B,, are even poly-
nomials in p=jx, such that the roots of P,+pB, =0
are the roots of I’+pB’'=0 (i.e. y=+4j) which have
negative real parts. Then jX,/Ry=pB,/P, and jX./R,
=pBQ 'PQ.

PHASE SWIET  NETWORK

INPUT

PHASE SHIFT NETWORK 2

CQUIVALENT Yo CIRCUIT IN Fig 1

Fig. 6—Basic phase-splitting circuit, decomposed into
elementary phase shift sections.

* F. Pyrah, “Constantimpedance cqualisers: Simplified method of
design and standardisation,” British P.0. Flec. Eng’s Jour., vol. 92,
pp. 204-211; October, 1939,

* . N. Truscott, “l.ogarithmic charts and circuit performance,”
Electronic Eng., vol. 14, pp. 745-748; May, 1942,

g S'l' l)ja(llngttqn, “lSynth:sis of reactance 4-poles which produce
prescribed insertion loss characteristics,” Jour. Math. Phys., vol.
13, pp. 257-353; September, 1939, ‘
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Darlington’s instructions, given without explicit
proof, can be modified in a way which includes the
proof. For this purpose we consider those values of x
at which y=tan (8i—0.)=j; at these values, say
x=x;, the phase-shift difference ¥(3:—pB2) approaches
-kj< which must be due to 38, tending towards +j
or 383, tending towards —j«. Let us now assume that
the two basic phase shift networks with series react-
ances X; and X, (see Fig. 1) consist of “elementary”
phase shift sections in tandem, each section being char-
acterized by its phase shift 8 and its normalized series
arm reactance dx =tan 8 or its normalized series arm
inductance @ (see Fig. 6).2® Then at each x; one of these
elementary phase angles 18 must tend to +j% and
tan i8=j, if B is a constituent of B;, or to —j® and
tan 8= —j, if B is a constituent of B3,. Since tan 38 =dx,
we find d= +j/x;. We take that sign which makes g,
the normalized inductance, positive. If, in order to ob-
tain a positive @ we have to take the positive sign, the
corresponding 3 is a constituent of (8,, whereas in the
other case we obtain a constituent of 3.. In this way we
not only find X, and X, but also, at the same time, the
constituent elementary sections forming the two basic
phase shift networks. It can be shown that forming the
expressions for X; and X; from the inductances of the
elementary phase shift sections in accordance with the
addition theorem of the tan-function leads to the ex-
pressions given by Darlington.

It will be seen that n elementary sections lead to an
expression for y in which the highest degree of x is #,
and vice versa. Thus the number of network elements
increases with the highest degree of x occurring.

VI. Two P’racticaL DEsiGN EXAMPLES

It is felt that in selecting practical examples for dis-
cussion in this article it is best to take very simple ones,
as then the method of obtaining the networks can be
shown most clearly. As a first example we shall discuss
a case in which a Taylor approximation is required, and
we select a simple case, namely n=3. Then the best
approximation is given by

3x + x?

- 14 3x? (14)

ys3

(see equations (9d)). Since 7 is odd, the number of sec-
tions of the two phase shifting networks must differ
by one. Let us assume that the network with X, con-
sists of two sections, say with series arm inductances d
and d, respectively. Then the network with X, has one

 In the general case of such a decomposition of a phase shift
network the individual ¢ values obtained are not necessarily real but
may occur in conjugate complex pairs. Then the two correspondin
clementary sections can be combined to one physical section wit
normalized series arm reactance ax/(1 —bx?) where a? <4b. However,
in the case of phase-splitting networks, complex @ values do not occur
if a Taylor or Tchebycheff approximation is used for the performance
curve, and they do not seem to occur in other good approximations.
On the other hand, their occurrence is the rule in filter design.
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single section, say with series arm inductance ds. Thus
we obtain
(@1 + d2)x

tan %B] =

— tan 38, = dsx
1 — d,d,x?

and

y =tan3(B1 — B2) =

4 (G2d3 + d3a1 — d1d2)x?

(@1 + a2 — d3)x + @18285%° i
- = - (15)
1

In this simple case we can obtain d,, dz, d; by comparing
coeficients in (14) and (15). Then a;4d;—d; =3;

dydq.d3 = l; dod3 + d3dy — @ d2 = 3.
By substituting we obtain a cubic equation for d; with
one positive root: ds=+1. Then ¢, =2+ /3, 2=2—+/3
and X;/Ry=4x/(1—x?), X3/Re=x. X and X, can be
interchanged. In a more complicated case we would
solve the equation y=+j and would obtain the three
roots x = —j, x=+j(2+ Vv3)and x=+j(2— v/3) either
by means of equation (9g) or algebraically. In view of
the signs of the roots, the first one must correspond to
X, and the other two must correspond to X,. Thus we
obtain d,=24+/3, d2=2—+/3 and d;= +1 as before.
As a second example we shall discuss a case in which
a Tchebycheff approximation is required. We shall take
n=4 so that we can use an algebraic method as well as
the transformation of elliptic functions for obtaining
the network elements. The specified x range is assumed
to be from x=+k to x=1/+k where k=0.003. This
corresponds to a frequency range from 30 cps to 10
ke. Then by means of layashi's tables k,=X\ is found
to be 0.5959. The y curve is shown in Fig. 5(a). Table 11
gives the expressions for the four x values at
which y=+j. Then using Milne-Thomson’s tables,
we find x= 472469, x=—j/2.469, x=+30.05618,
x=—7j/0.05618. Then for one phase-shift network
d;1=2.469, d,=0.05618 and for the other network
d3=1/d;=17.80, @,=1/d,=0.4049. From these values
of d,, ds, ds, d4 we find

X1/Ro = 2.526x/(1 — 0.1387x2),
X2/Ro = 18.20x/(1 — 7.208x2)

and y,=15.68x(14+x2)/[1438.62x?+x4]. X, and X; can
be interchanged. Applying the algebraic theory we
obtain from Table IV

dz = ()052, (14 = 25()1,

ke = AN = 0.5959

and

I

dd2x(1 + 22)/[1 + (2 + d)2* + 1)
15.68x(1 + x2)/[1 + 38.62x% + x4]

as before.

Y4

VII. ALTERNATIVE PHAsE SHIFT NETWORKS

The preceding discussion has been based on conven-
tional constant resistance phase shift networks with
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series arm reactances X and lattice arm reactances
—Ro?/X, inserted between equal resistances Ro. Then
the phase shift is 8=2 tan~! X. It is possible to alter
one of these resistances without altering the phase
shift; then a basic flat loss occurs. This is indicated in
Fig. 7. Marrison?? has shown that it is possible to replace
the two lattice arm reactances by resistances Ro with-
out altering the phase shift (see Fig. 8). Then, if the

1) R.R | R. R, M .|¢;;-

DR R LRIR N
V)

ﬂ ARBITRARY

Fig. 7—Classical phase shift lattice network.

ReaR ,R.aR. . '%‘

M AwnitRany

" Z.ﬂ.iq
1

Fig. 8—Alternative to network in Fig. 7.

source and load resistance are both equal to Ry, a flat
loss of 6 db is produced. It is possible to make the
source resistance (1/9)Ro and the load resistance nkR,.
Then an additional flat loss depending on 7 is produced,
but the phase shift is still unaltered. Saraga? has shown
that it is possible to replace one of the two remaining
reactive arms by a resistance R, (see Fig. 9) without

R,V RoaqR RoemR,

Fig. 9—Alternative to network in Fig. 7.

Mol . g 2290l
Y "

|

n AetitRary

altering the phase shift. Then, if n=1, the basic loss is
12 db instead of 6 db. Two other types of phase shift
networks, one due to Nyquist and described by Sande-
man®' (see Fig. 10) and the other described by Wald?
(see Fig. 11) can be shown to be special cases of the

2 \V. A. Marrison, United States Patent No. 1,926,877, dated
Septer\l{lbegalZ, 193%

* \V, Saraga, British Patent No. 594,431, dated Ma 29, 1945,
and U.S. Patelglt Application No. 670,264. ¥ .

3 E. K. Sandeman, “Phase compensation,” Elec. Commun., vol.
7, pp. 309-315; April, 1929.

2 M. Wald, “Eine Kunstschaltung zur Verdreifachung des Win-
kelmasses eines Kreuzgliedes und ihre Anwendung zum Phasen-
ausgleich in Pupinleitungen,” Elekt. Nach. vol. 19, pp. 196-199;
October, 1942.
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network in Fig. 9, but with more reactive c¢lements than
necessary for producing the phase shift actually pro-
duced. The circuit in Fig. 9 can be replaced by a hybrid
circuit (see Sandeman). Dome'® and Luck'? have de-
scribed a number of so-called half-lattice networks
which are driven froin a balanced source.

R [ A‘A w 'A'A:A'""A
R3V
v, R. 1=
R.
Rn Rz AND |V./V.] As N Fig 9

Fig. 10—Alternative to network in Fig. 7.

iX
4
iX| R [Rfix
X X
R' Qa T
AMMWWW—
R, 3V,

AA

v
R,R: and VAV as i Fig q

Fig. 11—Alternative to network in Fig. 7.

VIIIL. DissiPATION-COMPENSATED IPHASE
SHIFT NETWORKS

The cffect of dissipation in the elements of a phase
shift network is to distort the phase characteristic and
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to produce an attenuation varying with frequency. If
the Q-values of the different components are not the
same, the impedance is also affected. Starr® has de-
scribed methods for approximate compensation of these
effects of dissipation. Darlington?” and Bode* have de-
scribed methods for perfect compensation of the effects
of dissipation. The networks are designed to meet pre-
distorted specifications which are obtained from the
original ones by assuming the occurrence of negative
dissipation; then positive dissipation produces the re-
quired performance. A different method of obtaining
dissipation-compensated phase shift networks will be
described here.

Since any phase shift network can be built as a
tandem combination of one- and two-parameter phase
shift networks, it is sufficient to consider the dissipa-
tion compensation of such networks. The basic idea of
the method is to consider only networks which contain
a resistance in series with each inductance and a re-
sistance in parallel with each capacitance so that these
resistances can take up the dissipation resistances of
reactive elements, and to design these networks so
that they have the required phase characteristic 8 and a
flat loss a¢. For the lattice network in Fig. 12 the
transfer constant #=a+jB is given by tan h}¢=Z/R,.

Fig. 12—Lattice network, shown for reference purposes
in conjunction with Figs. 13 and 14.

(a)
o—ToW—o Z R, = jax

e
cfd  Jex

°":% y €= Q/a

BASIC LOSS o ZM"(EIO)

Fig. 13—Dissipation compensation of one-parameter
phase shift network.

2 A.T. Starr, British Patent No. 342,407, dated October 30, 1929,
i ‘_‘H." }z.vBodtr:‘3 “th:]vo(r‘k Analysis and Feedback Amplifier
esign, - Van Nostrand Company, Inc., New York, N. Y., pp.
216-218; 1945. pany, The., Rew Yor PP
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For the one-parameter type of phase shifting net-
work without dissipation Z/Ry=jax (see Fig. 13(a)),
and tan }B=adx, «a=0. Our aim is to find an imped-
ance Z with resistances as stated above so that
Z/Ry=(C+ijax)/(1+jCax) where C=tanh }a, and ac
is the basic loss of the network. It can easily be shown
that the network in Fig. 13(b) represents an impedance
Z of this form. Its elements will be positive if Q is not
too small.

We now consider the two-parameter phase shift net-
work (withoutdissipation) in which Z/R, isasshown in
Fig. 14(a). Then

7/Ro=jax/(1—bx?)

@ o 2 i

\ NETWORK 2 (c)

and a=0, tan i8=ax/(1—bx?).

(b) werwoas 1
N TR
R, /2.

FOR BoT™ NETWORKS %- o_m—o

efa  gex

)
C'-:.—?b— )C'A:—l‘a )‘A‘;Q'_

FoR NETWORK T

l- )‘

Ae _m_[(bQG‘)'-JG‘ nlj )
‘-b 3

F- 7;“--4%)(3.0')0

b . - .08 _
18 BASIC L.OSS o(s 2tank o

Por NETwoRX 1
PR CRY- 0Ty
Qa(b-Q%)?*
Fe ub-?:)(ng‘)o
a(b-a'»

UNC 1065 on 2Mank’

Fig. 14—Dissipation compensation of two-parameter
phase shift network,

We have to find an impedance Z with resist-
ances as stated above so that

Z/Ro = [C + jux/(1 — bx®))/[1 + jCax/(1 — bx?)].

It can be shown that the two networks shown in Figs.
14(b) and (c) have this impedance if the relations stated
in these figures are satisfied. In Fig. 14(c) it is, of course,
possible to absorb the resistance FRy in Z,/Ro DR/ Z,.
It will be seen that the resistance FR, is negative in Fig.
14(b) if a®>4b, and negative in Fig, 14(c) if a?<4b.
In Fig. 14(c) F <0 does not make the network necessar-
ily nonphysical.

If a? 2 4b the phase shift network defined by the series
arm reactance in Fig. 14(a) can be replaced by two
simpler networks of the type defined by the series im-
pedance in Fig. 13(a). As stated in Section V, footnote
reference 28, only the case a?24b seems to occur in
phase-splitting problems, but the other case has been
treated here too because the three transformations, de-
scribed by Figs. 13 and 14, together make it possible to
transform any given phase shift network into a dissipa-
tion compensated one,
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Note: Since writing this manuscript the author has
seen the papers by Dagnall and Rounds® and Farkas,
Hallenbeck and Stehlick® in which various other meth-
ods for dissipation compensation of phase shift networks
are discussed.

APPENDIX
CURVE APPROXIMATION

Both equations (9e) and (10c) which give the devia-
tion of y from unity for a given range of x and a given
order n for Taylor and Tchebycheff approximations,
can be written in the form

h(\) = m 4 h(k), where m = log: n,

and
h(\) = log: tanh~! /X, h(k) = logs tanh=! \/k
in the case of (9e) and
h(A) = log. ~—1—~_ _1_;
[FOV)] (F(R)]
in the case of (10c). This means that in hoth cases A=k,
as a function of k2 can be written in the form

kn = k2m(k)

h(k) = log.

where k,m(k) means the mth iteration of the function
ko(k). Here “mth iteration” refers not only to integral
values but also to fractional values of m, since m =log; n
is only integral if # is an integral power of 2. Some dis-
cussions of the concept of non-integral iteration of
functions have been given by Haldane,?" Silberstein,®
Hadamard.*

It is not possible to interpret in the same way the
approximating function y as an iterated function of k
because y is a function not only of %k, but of x and 4.
However, if we generalize the concept of iteration so
as to apply to functions of two variables (see 13o00le??),

% C. H. Dagnall and P. \V. Rounds, “Delay equalization of eight-
kilocycle carrier programme circuits,” Bell Sys. Tech. Jour., vol. 28,
pp- 181-195; April, 1949.

% F. S. Farkas, F. |. Hallenbeck, and F. E. Stehlick, “Band pass
filter, band elimination filter and phase simulating network for
carrier programme systems,” Bell Sys. Tech. Jour., vol. 28, pp. 196~
220; April, 1949.

]. B. S. Haldane, “On the non-linear difference equation
Axn=ke(x,),” Proc. Cambridge Phil. Soc., vol. 28, part 11, pp. 234-
243; 1932,

38 L. Silberstein, “Construction of groups of commutative func-
tions,” Phil. Mag., pp. 43-54; January, 1945.

» J. Hadamard, “I'wo works on iteration and related questions,”
Bull. Amer. Math. Soc., vol. 50, pp. 67-75; February, 1944.

4 G. Boole, “\ Treatise on the Calculus of Finite Differences,”
Macmillan and Co., London, 3rd Ed., p. 17; 1880,
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then y, can be regarded as the mth iteration of y(x, k)
where m =log: n. This will now be shown.

Since y»(x, k) leads from two independent to one de-
pendent variable, an iteration is only possible if we
introduce a second dependent variable, say, an arbitrary
function z(x, k). Then we shall define as (y2)? and (2,)?
the functions (y2)2=(y2, 2) and (2:)2=2z:(y:, 22).
Furthermore, we can define iterated functions y,™ and
2™, for integral as well as non-integral values of m, as
functions y,m= F(x, k, m) and 2" =G(x, k, m) of three
variables which satisfy the following relations.

F(x, k, 1)=y:(z, k), G(x, k, 1)=25(x, k) }’
F|F(x, k,my), G(x, k, m)), ma|=F|x, k, (m+m,) | . (16)
(,'[F(x, k,my),G(x, k, my), mz]=G[x, k, ("11+1712)JJ

Now if we choose as arbitrary function z,(x, k) the
function ky(k)—which happens to be independent of
r—we sce that the index law (equations (12)) can be
expressed in the form of equations (16) if m =log,n as
before. In other words:—y, and k, can be interpreted
as the mth iteration of y, and k, when regarded as a pair
of functions of x and k.

It is interesting to note that such an interpretation
1s also possible if, instead of an approximation by a
rational function, the approximation by a polynomial
is under consideration. If y=0 is to be approximated
by the polynomial y,=A¢+4x+A:x24 - - - 42" in
the range x = — 5 to x = 47, the nth order Tchebycheff
approximation is

ya = (17/2"71) cos [n cos™' (x/n)],

and the nth order deviation 5,=2""y" It is easy to
show that y,=3"(¢, 1) and n,=m"(x, 1) =n"(1).
These and other questions connected with non-integral
functional iteration are treated in a mathematical
paper by the author which is being prepared for publi-
cation.
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