Realizaticn of a Constant Phase Difference
By SIDNEY DARLINGTON

This paper bears on the problem of splitting a signal into two parts of like am-
plitudes but different phases. Constant phase differences are utilized in such cir-
cuits as Hartley single sideband modulators. The networks considered here are
pairs of constant-resistance phase-shifting networks connected in parallel at one
end. The first part of the paper shows how to compute the best approximation
to a constant phase difference obtainable over a prescribed frequency range
with a network of prescribed complexity. The latter part shows how to design
networks producing the best approximation,

PERENNTIAL problem is that of designing a circuit to split a signal

into two parts which are the same in amplitude but which differ in

phase by a constant amount. A 90-degree phase difference is needed, for
example, in the single sideband modulationsystem dueto R. V. L. Hartley.!
It is well known that it is not possible to obtain exactly equal amplitudes
and exactly constant phase differences at all frequencies except in the
trivial special case of a 180-degree phase difference. Various methods have
been devised, however, for approximating these characteristics over finite
frequency ranges. The most obvious method is to use a pair of constant
resistance phase shifting sections in parallel at one end and with separate
terminations at the other end? as indicated in Fig. 1.

This paper is devoted to the problem of obtaining approximately constant
phase differences under the specific assumption that pairs of constant re-
sistance phase shifting networks are to be used. The paper has been written
with two objects in mind. The first is the development of a method for
determining the best approximation to a constant phase difference which
can be obtained over a prescribed frequency range with a pair of phase
shifting networks of a prescribed total complexity. The second object is
the description of a straightforward design procedure by means of which
the networks can be designed to give this best possible approximation.

The problem under consideration is typical of those usually described
as problems in network synthesis. In other words, a network of a prescribed
general type is to be designed to approximate as closely as possible an ideal
operating characteristic of a prescribed form. The same procedure will be
followed as that appropriate for most such problems. The procedure begins
with the development of a mathematical expression representing the most

1. S. Patent 1,666,206, 4/17/28, Modulation System.
2 Another common method uses reactance shunt branches between effectively infi-
nite impedances, such as the plate and grid impedances of screen grid tubes.
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general characteristics which can be obtained with the prescribed type of
network. This is followed by the determination of particular choices of the
arbitrary constants in the expression, which will lead to the best approx-
imation to the prescribed ideal characteristic. The next step is to deter-
mine formulae for the degree of approximation to the ideal, which will be
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Fig. 1—Phase-shifting networks for approximation to a constant phase diffcrence.
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Fig. 2—Variation in phase difference, when average is 90°, with a network of n sections.

obtained with those particular values of the constants. The final step is
the development of a method for determining corresponding actual net-
works.

From the optimum choice of constants, curves can be calculated which
show what can be done with a network of any given complexity (Fig. 2).
Then the complexity needed for any particular application can be read
directly from the curves, The special choice of constants also leads to special
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formulae for element values of corresponding networks, using tandem sec-
tions of the simplest all-pass type (Fig. 3).

ForMm oF THE tan (g) Funcrion

If 81 and B: represent the phase shifts through the two constant resistance
networks of Fig. 1, then tan ('(;1) and tan ('822) must both be realizable

as the reactances of physical reactance networks. In other words, these
quantities must be odd rational functions of w with real coefficients and
must also meet various other special restrictions. If 8 is used to represent

the phase difference 82 — B:, the function tan (g) must also be an odd

rational function of w with real coefficients. Because of the minus sign
-\/ 21105 /
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Fig. 3—Simplest all-pass section.

associated with 87 in the definition of 8, however, tan (—g) does not have to

meet the additional restrictions which must be imposed upon tan (gl) and

tan (’%—2) In a later part of the paper a method will be described by which
a pair of physical phase shifting networks can be designed to produce any
tan g function which is an odd rational function of w with real coefficients.

In any range where the phase difference 8 approximates a constant, the
function tan (g) will also approximate a constant. Hence, the present
problem is really that of approximating a constant over a given frequency
range with an odd rational function of w with real coefficients. In this prob-
lem, the degree of the function must be assumed to be prescribed as well
as the frequency range in which a good approximation is to be obtained,
for the degree of the function determines the complexity of the correspond-

ing network.
W. Cauer shows how functions of certain types can be designed to approx-
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imate unity in prescribed frequency ranges.? These functions, however, are
not odd rational functions of frequency but are irrational functions appro-
priate to represent filter image impedances or the hyperbolic tangents or
cotangents of filter transfer constants. It turns out, however, that they
can be transformed into odd rational functions of the desired type by a
simple transformation of the variable.

Each of Cauer’s functions is said to approximate a constant in the Tcheby-
cheff sense, which means that in the prescribed range of good approximation
the maximum departure from the approximated constant is as small as is
permitted by the specifications on the frequency range and the degree of
the function. Each function also has the property of exhibiting series of
equal maxima and equal minima in the range of good approximation, such
as those indicated in the illustrative g curve! of Fig. 4.
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Fig. 4—Example of a phase difference characteristic.
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Of the various forms in which Cauer’s Tchebycheff functions F can be
expressed, the following form is the one appropriate for showing how odd
rational functions of frequency can be obtained:

When n is odd
=" [1 — sn’ (23 ; 1 K, k) XE:I
F=uvvi—x [ =¢ - .
=t [1 — sn” (; K, k) XE]

(1) When # is even

&) (2 — .
H[l —su'( S” IK,k) _\"]
g=] 4

U
F = ——/__'2 __n__ )
1- ﬂ—§_1 1 - SHE (é K’ k X.ﬁ
1

=1

3 “Ein Interpolationsproblem mit Funktionen mit Positivem Realteil,”” Mathematische
Zeitschrift, 38, 1-44 (1933).

1 The data for the illustrative curve were obtained from a trial design carried out by
P. W. Rounds.
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In these equations, the symbol sn indicates an elliptic sine, of modulus
k, while K represents the corresponding complete elliptic integral. U is
merely a constant scale factor, while # is an integer measuring the complex-
ity of corresponding networks. In the case of phase-difference networks,
n represents the total number of sections of the type indicated in Fig. 3,
which are included in the two phase-shifting networks or their tandem sec-
tion equivalents.

In Cauer’s filter theory, the variable X represents a rational function of

w which permits F to be an image impedance or a coth (g) function. In
order that F may be an odd rational function of w, however, as is required

when it is to represent tan ('g) , X must be defined by the relation

(2) w = way/ 1 - X2

Cauer shows that F approximates a constant in the Tchebycheff sense in
the range 0 < X < k. Hence, in terms of w, the range of approximation
is w; < w < ws, where w; and w» are arbitrary provided the modulus £ is
assumed to be determined by the relation

(3)

ALTERNATIVE EXPRESSION FOR THE tan (g) Funcrion

While equations (1) are the most convenient form of F to use in deriv-
ing the transformation of the variable, an alternative more compact form
is more suitable for determining the degree of approximation to a constant
phase difference and the element values of corresponding networks. When

F represents tan (‘g) and hence w and X are related as in (2), the equivalent

expression is as follows:?

B K,
@ tan (5) U dn (nu T kl)

w = we dnlu, k).

I

In this expression, dn represents a so-called “dn” function, the third type of
Jacobian elliptic function usually associated with the elliptic sine, or sn
function, and the elliptic cosine, or ¢n function. The symbol % represents

& This expression depends on a so called modular transformation of elliptic functions

not found in the usual elliptic function text. The transformation theory may be found in
“An Elementary Treatise on Elliptic Functions,” Arthur Cayley, G. Bell & Sons, Lon-

don, 1895.
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a “parametric variable” which would be eliminated on forming a single
equation from the two simultaneous equations indicated. The modulus &,

of the dn function corresponding to tan (g) is related to the modulus %,

of the dn function corresponding to w, in the manner indicated below. The
constant K, of course, represents the complete integral of modulus ;,
just as K represents the complete integral of modulus &.

Corresponding to any modulus £ there is a so-called modular constant gq.
Using ¢, to represent the corresponding modular constant of modulus #;,
it is here required that

) g1 = q".
One modulus can be computed from the other by means of this relation-
ship and tabulations of logip ¢ vs sin™! % which are included in most elliptic
function tables.®

DEGREE OF APPROXIMATION TO A CONSTANT PHASE DIFFERENCE

When # is real and varies from zero to infinity, the corresponding value
of w as determined by (4) merely oscillates back and forth between the values
w; and we. In other words, it merely crosses back and forth across the range

in which tan (‘g) approximates a constant. Similarly, when % is real and

increases from zero to infinity, tan (g) oscillates between U+/1 — k¢ and

U. The equal ripple property of the curve illustrated in Fig. 4 is explained

by the fact that the period of oscillation of tan (g) with respect to # is

merely a fraction of that of w, so that tan (g) passes through several ripples

while the value of w moves from w; to ws.
Combining the formulae for the maximum and minimum values of

tan (g) gives the relation

8\ _U(l —v1-—B)
© wn (3) - i pr—

® When £ is extremely close to unity, it may be easier to obtain accurate computations
by using the additional relation

logu (g) logu (g’ T Y
ogw (g) logw (g’) = ('O—QE)

— (5]
where ¢’ is the modular constant of modulus V1= = ;:
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in which & represents the total variation of the phase difference 8 in the
approximation range. Similarly, the average value 8, of 8in the approxi-
mation range is given by’
Ut + V1 — k)
1 - U1 - K

If the phase variation 6 is reasonably small, (6) and (7) can be replaced
by the approximate relationships

sin (8a)
2

(7) tan (160) =

§ = ki ralians
(8)

tan (%) UV RS

A still further modification is obtained by replacing ki by the quantity 16,
which is an approximate equivalent when ki is small, and by then replacing
¢ by the equivalent ¢* of (5). This gives

(9) 6 = 8sin wa)qﬂ

tan (%) = U~/1 — 16¢~.

When combined with (3) and tabulations of sin™'(k) vs logio(g) , these
formulae can be used to compute § when the parameters wi, ws, 84 and # are
prescribed. Curves of 6 are plotted against ws/w; in Fig. 2, assuming B, to
be 90 degrees.

DETERMINATION OF A NETWORK CORRESPONDING TO A GENERAL
PrASE DIFFERENCE FUNCTION

Since tan (g) must be an odd rational function of w, it can be expressed

in the form

(10) tan (g) = %i_i

in which 4 and B are even polynomials in w. This requires

(11) g = arg (4 + iwB).

7 More exactly, fa is the average of the maximum and minimum values of 8 occurring

in the range of approximation.
8 In the important special case in which the average phase difference fa is 90°, this

expression for tan (52“) is exact rather than approximate.
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Similarly, if attention is focused on the phase shifts of the individual
phase-shifting networks rather than on the phase difference, the following
odd rational functions can be introduced:

B\ _ whBi
(87

B2\ _ wBs
tall(z) = ?1—2'

in which 4y, By, 4., and B, are additional even polynomials in w. This
requires

(12)

% = arg (4, + iwB))
(13)

%‘ = arg (4. + iwf:).
It also requires
(14) —Pt = arg (4, — iuB)).

Since the argument of a product is the sum of the arguments of the sep-
arate factors, (13) and (14) require

(15) E=t” 0l

= arg (A: -I— ’ing)(A; —_ fwB;).

This permits us to write
(16) (A: 4 twBa)(Ay — iwBy) = H(A + iwB)
in which H is a real constant.
When tan (g) is prescribed, a corresponding polynomial of the form

(4 4 iwB) can readily be derived. The problem is then to factor it into
the product of two polynomials (4s 4+ iwBs) and (4; — iwB;) such that
Ay, By, A, and B, determine physically realizable phase shifts through
(12). Two factors of the general form (4, + iwBs) and (4, — iwB;) can
readily be obtained in a number of ways. The only question is how to obtain
them in such a way that the corresponding phase characteristics will be
physical. A procedure meeting this requirement is described below.

The variable o is first replaced in (4 + iwB) by p representing iw. This
leaves a polynomial in p with real coefficients, since A and B represent
polynomials in «? while p* represents —w®. Suppose all the roots of the poly-
nomial 4 + pB are determined. Then this polynomial can be split into
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two factors by assigning various of the roots to each of the two factors.
It turns out that physically realizable phase characteristics will be obtained
if all those roots with positive real parts are assigned to the factor (4, — #B1)
which appears in (16) when iw is replaced by p, all other roots being assigned
to the factor (d: + pBs).

The physical realizability of the above division of the roots follows from

pB:

a theorem which states that T is realizable as the impedance of a two-

z

terminal reactance network whenever 4, and B. are even polynomials in
# with real coefficients such that 4. 4 pB, has no roots with positive real
parts.® From this theorem and the fact that the evenness of 4, and B,
causes them to remain unchanged when p is reversed in sign, it follows that
ﬁBz

T
work whenever A, — pB. has no roots with negative real parts. Thus, by

(12) the above division of the roots of 4 + pB makes tan (g‘) and tan

will also be the impedance of a physical two-terminal reactance net-

(%) realizable as the impedances of two-terminal reactance networks.

These reactance networks and their inverses are merely the arms of unit
impedance lattices producing the phase characteristics defined by (12).
The above argument merely shows that each of the two phase-shifting

networks can at least be realized as a single lattice when tan %1 and

tan ('(;2) are determined by the method described. Actually, they can be

broken into tandem sections directly as soon as the roots of (4, — pBy)
and (42 + pBs) have been determined. From (4; — $By) , the quantity
(A1 4+ pBi) can be found by merely reversing the signs of the roots. Then
by using the principle that the argument of a product is the sum of the
arguments of the separate factors, phase-shifting networks can be designed
corresponding to various factors or groups of factors as determined from
the known roots of (4, + #B;) and (42 + $B2) . There can be a separate
section for each real root and each conjugate pair of complex roots.’®

DETERMINATION OF A NETWORK CORRESPONDING TO A TCHEBY-
CHEFF TYPE OF PHASE DIFFERENCE CHARACTERISTIC

The procedure described above for determining a network corresponding
to a general phase difference characteristic is complicated by the necessity

9 See “Synthesis of Reactance 4-Poles which Produce Prescribed Insertion Loss Char-
acteristics,” Journal of Mathematics and Plhysics, Vol. XVIII, No. 4, September, 1939—

page 276.
10 See H. W. Bode, “Network Analysis and Feedback Amplifier Design,” D. Van

Nostrand Company, New York, 1945, Page 239, §11.6.



CONSTANT PHASE DIFFERENCE 103

of determining the roots of the polynomial 4 4 pB. In the case of the
Tchebycheff type of characteristic described in the first part of the paper,
the required roots can be determined by means of special relationships.

In the first place, the roots of 4 -+ pB are the roots of (1 + i tan 'g) . In

other words, by equation (4) they are the roots of [1 + iU a".'a(a'mff%1 , kl)].
The values of « at the roots turn out to have an imaginary part iK', where
K’ is the complete elliptic integral of modulus /1 — k2. Tf a new variable
u' is defined by

(17) u=u"—+ 1K’

the roots can be shown to correspond to the values of #’ determined by
sn (mt’ % , k,)

(18) — = —U.

cn (uu’ K k )
K

If it is assumed that the phase variation is small in the range of approx-
imation to a constant, it can be shown that one value of %’ determined
by the above relation is given approximately by

ni'w
K

where 8, is the average phase difference for the range of approximation as

before (in radians). After this value of #' has been computed, all the roots

of I:l + iU dn (nu%, kl):l can be found by computing the values of w

corresponding to this value of #’ and to those values obtained by adding

(19) '_.Ga

. L2 L
integral multiples of the real period —”é of du(nu % , kl). This gives the

following formula for the roots in terms of p = iw.

cn (2{% —+ ué)
(20) P,=w2——(z;f—’): c=0---,(n—1)
s — =+ o

in which #, is the value of %’ determined by (19).

Finally, instead of using the above elliptic function formula directly, one
may replace the elliptic functions by equivalent ratios of Fourier series
expansions of @ functions. This gives

Q1) pe = \ammy 25 Q) ¢ 08 BN,) + ¢ cos (SA,) - -
v 12 sin O‘U) — 92 sin (3)\6) + qﬁ sin (SA,) .
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in which the angle A, is defined by

o-180° — 10,
i

(22) Ao = degrees, o=0,, (n—1)

Because all the p,’s are real in this Tchebycheff case, corresponding net-
works can be made up of sections of the simple type indicated in Fig. 3.
In one of the two phase-shifting networks there will be one section for each
positive p,, and it will be given by

1
Pa’ RDPn‘
where R, is the image impedance. Similarly, in the second phase-shifting
network there will be one section for each negative p., and it will be given by

_ R C —1

L = = ——.
po Rﬂpa



