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The Clapp High-Stability Circuit

x a result of our note in August QST comment-
ing on the similarity between E. O. Seiler’s
VFO in the November, 1941, issue! and J. K.
Clapp’s series-tuned oscillator circuit, described
in May QST of this year,2 Mr. Clapp has written
us pointing out some rather important differences
between the two circuits. Superficially, the two
are alike in that the tube is loosely coupled to
the tuned circuit and large ‘“‘swamping” ca-
pacitances are connected across the tube elements.
If these features completely disposed of the
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Fig. 1 — The two oscillator circuits discussed in the
text. Blocking condensers, etc., are omitted in these
simplified circuits, not being essential to the discussion.

stability problem the fact that in the Clapp
circuit the tuning condenser is in series with the
coil while in the Seiler circuit it is in parallel with
it would merely be a question of choice based on
convenience. The explanation below, quoted from
Mr. Clapp’s letter, shows why the way the tuning
condenser is connected does affect the stability of
the oscillator, and thereby

the ‘series’ version (Fig. 1B). We are also in the
same trouble in using ‘butterfly’ circuits, which
are ‘parallel’ circuits.

“For a quick review of the differences, consider
a tube with coupling capacitances Cs, Cy (Fig.
2A). The IRE article shows the equivalent
impedance as a negative resistance in series with
the net reactance of C3 and Cj in series. If a coil
of the same reactance, and a resistance slightly
less than the negative resistance, are connected
to the tube network, a ‘high-C” oscillator results
(Fig. 2B).

“If we use a much bigger coil, L’;, in series
with a small tuning capacitance, Cs, of nearly the
same reactance as this coil so that the net re-
actance of coil and condenser in series is the same
as before (Fig. 2C), we will again obtain oscilla-
tions at the same frequency as before. (This is not
the series-resonant frequency of the coil and
tuning capacitance.) In Fig. 3, the dotted curves
show the reactances of the coil and tube circuit of
Fig. 2B with operation at series resonance. The
point A marks the net positive reactance which
must be supplied by L’; and C2 of Fig. 2C in
series, for ‘series’ operation at the same frequency
as before. The increased slope of the net reactance
curve through point A4 is one reason for improved
stability.

‘“Next consider the coil L; and capacitance C
in parallel (Fig. 4A). The combination acts as an
inductance at frequencies below the resonant
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basically different: '

“The resemblance (between
the two circuits shown in G
Fig. 1) lies in the use of large 2 G
capacitances across the tube. T
However, the network L;C; 2
in Fig. 1A must be an equiva- 7= -p-j(xc +xc,)
lent inductance and Cy is the =-R-jx3 ¢

effective series tuning capaci-
tance. Because of the circulat- (A)
ing current in L;C; the com-
bination will not be as good
an inductance as L; alone.
“Though not described in
the I.R.E. Proceedings, I have
analyzed and experimented with the ‘parallel’
version (Cg omitted in Fig. 1A), particularly with
a view to applications at low frequencies. The
over-all results are distinctly poorer than with

1E. O. Seiler, “A Low-C Electron-Coupled Oscillator.”
2 A High-Stability Oscillator Circuit,” Tech. Topics.
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Fig. 2 — The tube and the coupling condensers, C3, Cs (A) are replaced by
an impedance consisting of a negative resistance and reactance in series (to
the right of the terminals 1, 2, in B and C) for purposes of analysis. B shows
the equivalent of a high-C circuit and C the equivalent of the series-tuned

frequency (Fig. 4B). The effective Q is the ef-
fective inductive reactance divided by the ef-
fective resistance, and is given by the equation
below the figures. (Note that the effective Q is
zero when the circuit is parallel resonant at the
operating frequency of the oscillator. It is ob-
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Fig. 3 — Operating characteristics of high-C and
series-tuned circuits. At the operating frequency, the
inductive reactance X1 and capacitance reactance XC
are equal. The dashed curves show how these re-
actances vary with frequency in a high-C circuit. In
the series-tuned circuit (solid curves) the same amount
of inductive reactance must be supplied (point 4) but
is obtained as the difference between the inductive and
capacitive reactances of the series-connected coil and
condensers. The steeper slope of the net-reactance
curve in this case represents an increase in the effective
Q; this improves the stability just as the high Q of a
quartz crystal improves the stability of an oscillator
in which it is used.

viously impossible to operate the circuit of Fig.
1A at the frequency of L;C;.) The maximum
effective @ (Q.) comes at & = —0.4, approxi-
mately, and the maximum value is a small
fraction of Qo — 0.38Q, in fact. The parallel-
tuned circuit, operated to act as an equivalent
inductance, has at best only one-third the Qo of
the coil you start with. The nearer you operate
to the parallel-resonant frequency the poorer
the Qs becomes.

“Furthermore, at frequencies much lower than
the parallel-resonant frequency the effective series
reactance of L; and Cp in parallel is but little
more than that of L; alone. Thus the only pos-
sible benefit that could result from parallel
tuning — that is, an effectively larger inductance
— is not realized. What reactance is realized is
obtained at the cost of spoiling the Q.”

It may throw a little more light on the situation
depicted in Fig. 4 to adopt a somewhat different
viewpoint than that used by Mr. Clapp. The
formulas in Fig. 4 are based on varying the
frequency applied to a circuit, L,C, of specified
constants, whereas, in the case of an oscillator
operating on a specific frequency, we are more
interested in the effect of different values of
capacitance at Ci when L;C; is used in the
oscillator circuit of Fig. 1A. In comparing the
performance of the circuits at A and B in Fig. 1
there are two cases of particular interest. One is
the ease where Cs has the same value (at the
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same operating frequency) in both circuits. The
other is the case where L; has the same inductance
value in both circuits (this obviously calls for a
lower value of C; in Fig. 1A than in Fig. 1B).

In the first case, L;C; must always show the
same value of inductive reactance, the inductance
of L; being adjusted to that end as different
values of capacitance are used at C;. The circuit
action can best be visualized graphically by
means of the simple vector diagrams shown in
Fig. 5. In A the relationship between voltage and
current is shown (on an exaggerated scale) for a
coil and resistance in series, without a parallel
condenser. Because of the resistance, the current
I, and applied voltage E are not exactly 90
degrees out of phase but have some smaller
phase angle a. The resistance is the internal
resistance of the coil, and the @ of the coil is
equal to 2nfL/R, where f is the operating fre-
quency. The ratio of the distance X to distance
Y is equal to the coil @ and determines the phase
angle.

When a condenser is added in parallel, as in B,
a current Ic flows through it, 90 degrees ahead
of the applied voltage. To bring the net re-
actance back to its former value (and thus meet
the conditions for the same operating frequency
as outlined above) the inductance must be
decreased so that the current Iy, through it can
increase to the point where the projection of the
resultant current, I, on the vertical axis is again
equal to the distance X. If we assume that the
new smaller coil has the same @ as the original
coil, the phase angle of Iy will not change.
However, the phase angle between the resultant
current, I, and the applied voltage, E, is now
smaller and is equal to the angle b. The effective Q
of the parallel circuit is equal to X/Y and is
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Q=22 -0, 8(1+5)(2+5)
where 5=(g3-1)
Max. Q¢=0.385Q, at §=0.423
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Fig. 4 — Behavior of a circuit consisting of a coil
and condenser in parallel. When operating below the
resonant frequency the circuit shows inductive re-
actance and resistance, and can be represented by the
equivalent series circuit shown at B. The effective Q is
always less than that of the coil alone when the Q of the
latter is measured at the resonant frequency of the
circuit.

Considering L,C, as a
series-resonant circuit
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Fig. 5— These vector diagrams show graphically
why a condenser in parallel with a coil decreases the
effective Q between the terminals indicated. The cir-
culating current causes a shift in the phase angle
between applied voltage and line current in a direction
that results in an increase in the resistive component of
the parallel impedance as C is made larger and L cor-
respondingly smaller. The diagrams are for constant
applied frequency and a constant value of the inductive-
reactance component of the parallel impedance.

obviously less than before, since Y has increased.

In C the effect of a still larger capacitance is
shown. Because of the increase in I, (which is
still assumed to have the same phase angle, a, as
before; in other words, the @ of the still smaller
coil is the same as the others) the resultant cur-
rent I is at a still smaller phase angle with respect
to E. The ratio X /Y, the effective @, is therefore
smaller. It is not hard to see that the larger the
parallel condenser becomes the worse the effect
on the over-all @ of the circuit. In addition, it is
doubtful if the smaller coils actually would have
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as good inherent ¢ as the larger one. Since the
stability of the circuit depends on the steepness
of the net-reactance curve shown in Fig. 3 (the
slope of this curve in turn is determined by the
effective @) it should be clear that the larger
the parallel capacitance the poorer the stability
of the oscillator.

In the second case the same coil, L, is to be
used in both oscillator circuits. If we assume
that the capacitances of C3 and Cj4, Fig. 1, are
sufficiently large to have no material effect on
the tuning, the series-tuned circuit simplifies to
Fig. 6A. The source of r.f. is inserted in series at
X, and the @ of the circuit is equal to the @ of the
coil. The equivalent of the circuit of Fig. 1A is
shown at B in Fig. 6, under the same assumption
with regard to Cs and C4. C; plus Cg in B must be
equal to C in A, since the frequency is to remain
the same, and the r.f. is inserted between the
two condensers as shown. By the argument above,
the effective @ of this circuit is less than that of
the coil alone, and thus less than that of the
circuit of Fig. 6A. Hence the stability is not as
good with the parallel condenser as with pure
series tuning. Again the reduction in stability
depends on how much capacitance is in Cj,
Fig. 6B; the smaller C; the better the stability
becomes.
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Fig. 6 — Simplified diagrams of series- and parallel-
tuned circuits having the same value of inductance, L.
In B, the sum of C1 and C: is equal to the capacitance
of Cin A.
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In this connection there is another considera-
tion that favors the series-tuned circuit. It was
pointed out previously? that the stability of the
series-tuned oscillator increases as the L/C ratio
is increased. The only limit to the L/C ratio that
can be used in a given set-up is the @ of the coil;
the higher the @ the higher the L/C ratio at
which the circuit can be made to oscillate. Now
if the capacitance is split into two parts as in
Fig. 6B, the series condenser, C3, is necessarily
made smaller than C by the amount of capaci-
tance shifted to C1. If the circuit of Fig. 6B will
oscillate at all under these conditions, it will also
oscillate if C; is omitted entirely and a larger
inductance of the same @ is used at L; to restore
resonance. The circuit then reverts to Fig. 6A —
with a further improvement in stability because
of the higher L/C ratio.
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