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Summary—Two frequency-modulated signals received in the same
frequency band produce an output from the receiver which is simply a
combination of both signals and a beat note whose frequency is modu-
lated in accordance with both signals. The difference of signal strength
required for the reduction of crosstalk from the weaker signal is less in
frequency modulation than in amplitude modulation, but is the same
for different bandwidths of frequency modulation. The required dif-
ference can be further reduced by the use of a limiter in the receiver.
The beatnote interference remains as background noise fluctuating
with the modulation of both signals. This noise is reduced by wide-
band frequency modulation. Simple expressions for the detector output
in several cases enable the identification of frequency effects which are
unavoidably detected as distinguished from amplitude effects which can
be removed by a limiter. Common-channel interference 1s readily tesied
by oscilloscope patterns. These show the normal operation with or with-
out a limiter, and also the effects of depariure from the normal, such as
detuning. :

I. INTRODUCTION

OMMON-CHANNEL interference is caused by
<§ the reception of an undesired signal in the same
frequency channel as the desired signal. Such
interference is inherently independent of frequency

The amount of common-channel crosstalk inter-
ference depends on whether the frequency detector
has a linear or a square-law rectifier, unless a perfect
limiter is assumed. It is least with a perfect limiter and
greatest with square-law rectifiers. It is unaffected by
the characteristics of the frequency-modulation sys-
tem, such as the bandwidth of modulation.

The beatnote interference has the unusual char-
acteristic of simultaneous amplitude and frequency
modulation. Its peak amplitude is dependent on the
receiver properties but more significantly is affected
by some properties of the frequency-modulation sys-
tem. It is reduced by increasing the bandwidth of
frequency modulation. It is further reduced by pre-
emphasis and restoration of the higher frequencies of
the modulating signal, which incidentally requires a
restoring filter after the detector in the receiver.
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Fig. 1—Frequency-modulation system with interference between
two signals in the same frequency band.

selectivity in the receiver. In amplitude-modulation
systems it is independent also of other properties of
the receiver, such as the difference between linear and
square-law detectors. In frequency-modulation sys-
tems, however, such interference is determined by the
properties of the receiver and the bandwidth of fre-
quency modulation.

The receiver has a frequency detector which is bal-
anced against amplitude modulation at the unmodu-
lated-carrier frequency of the desired signal. There
may or may not be a carrier-amplitude limiter preced-
ing this detector. In response to only one signal, the
output of the frequency detector is proportional to the
frequency modulation. This is a property of any one of
several types of idealized frequency detectors with
linear or square-law slope filters and rectifiers.
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The relation between the amplitude and the fre-
quency of the beatnote interference is shown directly
by “conical patterns” on the oscilloscope. These are
produced by tracing the two-signal output vertically
against the difference between the respective modu-
lating signals as the horizontal sweep. This choice of
sweep voltage causes the horizontal displacement to
be proportional to the beat frequency, so these pat-
terns show directly the effect of any frequency-selec-
tive filters following the detector.

All of the relations to be described are based on
simple and direct theoretical derivations with the aid
of the zero-frequency-carrier concept. There is no as-
sumption as to the waveform of the modulating sig-
nals.

The parts of the frequency-modulation system which
are essential in the study of common-channel inter-
ference are shown in Fig. 1. The audio-frequency
modulating voltages are respectively E,’ and E,” for
the desired and undesired signals. The corresponding
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frequency-modulated-carrier signals are E; and E,".
The composite signal which reaches the receiver is Es.
This may or may not be subjected to the action of a
carrier-amplitude limiter before reaching the detector
as E;. The balanced detector comprises a pair of slope
filters of opposite slope and a pair of rectifiers. The
differential output of the rectifiers is the composite
detected signal E,, including both the desired signal
and the interference from the undesired signal.

I1. IDEALIZED BALANCED FREQUENCY
DETECTORS

An ideal detector for frequency modulation is one
which not only reproduces the waveform of frequency
modulation but also is unresponsive to amplitude
modulation. The latter requirement is partially ful-
filled in the balanced frequency detector. This com-
prises two frequency detectors with a differential out-
put circuit. They convert the frequency modulation
into amplitude modulation of opposite polarities. In
their differential output appears the signal correspond-
ing to the frequency modulation, but any signal cor-
responding to original amplitude modulation tends to
cancel out. Complete avoidance of response to ampli-
tude modulation would require a perfect limiter pre-
ceding the detector.

The elements of the balanced frequency detector
are shown in Fig. 1. The slope filters of the two sides
have equal response at the center frequency and have
opposite slope. The rectifiers are alike but oppositely
coupled to the output circuit. These relations assure
the nearest approach to cancellation of any output
representing incidental amplitude modulation.

The properties of linear slope filters are shown in
Fig. 2(a), relative to the unmodulated-carrier fre-
quency in the center. The filter factors are denoted
F, and F_. The intercepts at +f, are located arbitrar-
ily for present purposes, but are preferably near the
edges of the pass band in practical applications. This
location makes the balance least critical and gives
sufficient operating range with linear rectifiers.

The use of the linear slope filters with linear recti-
fiers gives the characteristics of Fig. 2(b).! The linear-
rectifier properties give rectified voltages equal in
magnitude to the envelopes of the voltages from the
slope filters. The output of the balanced detector is the
difference of the two rectified voltages. In this case, the
differential output is proportional to the frequency
modulation only between the intercept frequencies
+f., as shown in Fig. 2(c).

Square-law rectifiers instead of linear rectifiers mod-
ify the frequency characteristics to those of Fig. 2(d).
The square-law properties give rectified voltages equal
to the square of the magnitudes of the envelopes of the

1E. H. Armstrong, “A method of reducing disturbances in radio
signaling by a system of frequency modulation,” Proc. I.R.E., vol.
24, pp. 689-740; May, 1936. (Balanced frequency detector with

linear slope filters and linear rectifiers, his Figs. 5 and 6 compared
with Fig. 2 herein.)

voltages from the slope filters. The differential output,
as shown in Fig. 2(e), is proportional to the frequency
deviation over an unlimited range. The curvature of
the square-law rectifiers cancels out. This type of bal-
anced frequency detector is ideal for theoretical
studies, because square-law rectification is most easily
formulated in mathematical terms.
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Fig. 2—The essential properties of balanced
frequency detectors.

A third type of frequency detector comprises square-
law slope filters of the shape of Fig. 2(d) with linear
rectifiers. This type also delivers an output like Fig.
2(e) for slow modulation. If the modulation is too
rapid, however, this type is found to have a limited
range of operation even less in extent than that of lin-
ear slope filters with linear rectifiers, shown in Fig.
2(c).

The first type, with linear slope filters and linear rec-
tifiers, is the only one which tolerates a departure from
balance without causing distortion of the signal. The
other types rely on the balance to cancel the distor-
tion introduced by the square-law characteristics of
the individual rectifiers or slope filters.

Linear rectifiers have a practical advantage over
square-law rectifiers in that the output signal ampli-
tude varies only half as much with input amplitude.
Also the relative response to the amplitude modulation
in the composite signal is found to be only half as
great with linear rectifiers as with square-law recti-
fiers.
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From these considerations, it appears that the first
type with linear slope filters and linear rectifiers has
some advantages over the other types. It is found to
operate free of distortion if the frequency modulation
is held within the limits of the linear slope in Fig. 2(c),
regardless of the waveform of modulation and the
marginal sidebands outside of these limits. The most
efficient rectifier is the diode peak detector, which
best meets the requirement of linearity.

Fig 3—The vector sum of two frequency-modulated signals.

Since the second type with linear slope filters and
square-law rectifiers is the simplest for theoretical
study, its behavior also is to be described.

If a perfect limiter is assumed preceding the detec-
tor, the amplitude effects are removed and it becomes
immaterial whether linear or square-law rectifiers are
used. Of course, a perfect limiter is not possible in
practice, but comparable performance can be obtained
with practical limiters of careful design.

IT1. Tae AMPLITUDE AND FREQUENCY MoODU-
LATION IN THE RESULTANT oF Two
SIGNALS SUPERIMPOSED?

In response to two signals, there is a difference in
operation with and without a limiter. This difference
is caused by the amplitude modulation which is pres-
ent in the composite signal. With a perfect limiter,
only the frequency modulation contributes to the de-
tector output.

In the study of the behavior without a limiter, the
theoretical derivations do not require the separate
expression of the amplitude and frequency modula-
tion. If the limiter is present, however, the frequency
modulation does have to be expressed separately.

The superposition of two signals of constant ampli-
tude is shown vectorially in Fig. 3. The unit vector
E,' is the desired signal and the vector E;” of length
k is the undesired signal. Their frequencies and there-
fore their phase angles 5’ and 4" are modulated. The
resultant of these two vectors is the composite signal
E, whose phase angle is b. The average frequency of
the composite signal is that of its stronger signal be-

? Hans Roder, “Noise in frequency modulation,” Electronics, vol.

10, pp. 22-25, 60, 62, and 64; May, 1937. (The vector resultant of
two signals, his Fig. 4 compared with Fig. 3 herein.)
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cause the relative phase displacement caused by the
weaker signal is alternately forward and backward.

Fig. 4 shows the alternating modulations caused by
the weaker signal. The fundamental frequency of these
modulations is the beat frequency, which is the fre-
quency difference between the two signals. To the ex-
tent that the waveforms depart from sine waves, they
include also harmonics of the beat frequency.

The relative amount of amplitude modulation is
denoted @ and its waveform is shown as Fig. 4(a). It
is plotted to the scale a/k to show the change of wave-
form within the same limits and with nearly the same
fundamental component. It is noted that this is the
shape of the envelope of a carrier accompanied by a
single-sideband component.

The alternating phase displacement caused by the
weaker signal is shown in Fig. 4(b). It is plotted to the
scale b/k, which maintains the same fundamental com-
ponent. As the amplitude of the weaker signal ap-
proaches that of the stronger signal (k=1) the phase
modulation approaches a saw-tooth waveform. The
phase reversal at the instant when the two signals are
in opposition appears in the saw-tooth waveform as a
phase step of 7 radians. This case is shown for a value
of %k approaching unity from the lesser side, so the
phase step is negative as required to complete the saw-
tooth waveform. This is necessary to assure that the
average frequency remains that of the stronger signal.

The corresponding waveforms of frequency modu-
lation are shown in Fig. 4(c), plotted in terms of w/k
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Fig. 4—The beatnote waveforms of
(a) amplitude modulation
(b) phase modulation
(c) frequency modulation.

to maintain the same fundamental component. These
are the time derivatives of the phase waveforms. As
the signals approach equality, the harmonics approach
the fundamental in amplitude and the waveform as-
sumes an impulse shape of very great peak value.

It is these beatnote waveforms of frequency modu-
lation to which the receiver responds if a perfect limiter
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is assumed. Since the average frequency of the com-
posite signal is that of the stronger signal, there is no
response proportional to the frequency modulation of
the weaker signal. Therefore there is no crosstalk from
an undesired signal weaker than the desired signal.
Reciprocally, a stronger undesired signal completely
masks the desired signal. There is heard only the
modulation of the stronger signal, together with the
beatnote and its harmonics.

If there is not a perfect limiter assumed, there is
some response to the amplitude modulation in the
composite signal, Fig. 4(a). The amplitude modulation
has not only the beatnote fundamental and harmonic
components, but also an increase of its average value
caused by the presence of the undesired signal. This
is in contrast to the average frequency, which remains
unchanged. It is the change of the average amplitude
to which is attributed the crosstalk interference from
a weaker signal, which is to be described and which
occurs only in the absence of a perfect limiter. The
beatnote components of the amplitude modulation
modify the amplitude and harmonic content of the
beatnote output from the frequency detector, in a
manner which also remains to be described.

1V. THE REsSPONSE TO TWO SIGNALS3+

In the derivation of the detector output in response
to one or two signals, the conditions in the system are
assumed which normally give an output equal to the
input modulating signal. Each modulating signal E;
varies within the limits of + 1. The resulting frequency
modulation of the modulated-carrier signals E, is
within the limits of & f., the same as the limits on the
range of linear operation of the frequency detector
with linear slope filters and linear rectifiers, Fig. 2(c).
Therefore, the bandwidth of modulation is 2f.. The
desired signal E.’ has unit carrier amplitude, and the
undesired signal has a carrier amplitude &, which is
therefore the relative amplitude of the undesired sig-
nal.

The simplest expression for the response to two sig-
nals is obtained in the case of square-law rectifiers, be-
cause it happens that the amplitude and frequency
modulation combine to give a beatnote free of har-
monics. The output for this case is simply

E4 = El'
+ k2B
+ k(E1’ + E1”) Ccos (b”—b')

desired signal
crosstalk
beatnote. (1)

This output comprises one term which is a replica of

3 M. G. Crosby, “Frequency modulation propagation character-
istics,” Proc. I.R.E., vol. 24, pp. 898-913; June, 1936. (Two signals,
comprising the same signal received over two different paths.)

4 M. G. Crosby, “Frequency modulation noise characteristics,”
Proc. I.R.E., vol. 25, pp. 472-514; April, 1937. (Two signals, com-
prising a desired signal and noise. The case of a perfect limiter. The
separate identification of the desired-signal output and the beat-
note interference. The beatnote waveform, his Fig. 4 compared
with Fig. 4 herein. The conical pattern, his Fig. 16 compared with
Fig. 8 herein.)
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the desired-signal modulating voltage E,’ and another
which is a replica of the undesired-signal modulating
voltage E,”. The latter is identified as the crosstalk
interference, which is recognizable as the undesired
signal. The remaining term is the beatnote between
the two signals. Its phase is the difference between the
progressive phase angles b’ of the desired signal and

ml-

Fig. 5—The output in the case of square-law rectifiers and the
desired signal unmodulated showing the crosstalk and beatnote
components.

b" of the undesired signal. Therefore the frequency of
the beatnote is modulated in accordance with the
difference of the two modulating voltages (E," —E;’).
The amplitude of the beatnote is modulated in ac-
cordance with the sum of the two modulating voltages.
This combination of amplitude and frequency modu-
lation of the beatnote gives it a nondescript character
which retains no recognizable qualities of the two sig-
nals except their syllabic pulsations.

The interference is most noticeable while the de-
sired signal is unmodulated (E,’=0), leaving only the
crosstalk and beatnote terms. Their amplitude would
increase indefinitely with the strength of the unde-
sired signal (k), were it not that an automatic volume
control is used. It is assumed that this control holds
uniform the mean-square voltage of the composite
signal. This has the effect of dividing all terms in (1)
by the factor (1-+4%2).

On this basis, Fig. 5 shows the interference output in
the case of square-law rectifiers, for several different
values of the relative strength of the undesired signal.
The undesired signal has sinusoidal frequency modu-
lation, the extent of frequency modulation in each
direction being 337 /2 times the modulating frequency.
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Therefore the maximum frequency of the beatnote is
337/2 times that of the modulation. This large ratio
is taken to clarify the difference between the crosstalk
of relatively low frequency and the superimposed beat-
note of varying frequency. The incommensurate ratio
is taken to give an integral number (33) of beatnote
cycles during one cycle of modulation. An odd multi-
ple of 7/2 is taken to give a symmetrical waveform of
the beatnote during each half cycle of modulation.

]ﬂﬂﬂﬂn ﬂ

W VUUU i

>
[}
of-

Fig. 6—The output in the case of a perfect limiter showing the
unsymmetrical waveform of the beatnote component.

Fig. 5 shows the relative importance of crosstalk
and beatnote, depending on the relative signal
strength. The beatnote term predominates if the
undesired signal is much weaker, and reaches a maxi-
mum if the two signals are equal. The crosstalk term
increases with the strength of the undesired signal
until it exceeds the beatnote term; at the same time,
the desired signal is blocked out by the automatic vol-
ume control, but this effect is not shown in Fig. 5.

If wide-band frequency modulation is used, the beat
frequency during part of the time is so high that it is
inaudible and may be filtered out in the audio-fre-
quency amplifier. In this case, the beatnote is
diminished during the peaks of modulation, and its
wide range of frequency modulation gives it a sizzling
or spitting sound.

The corresponding interference with linear rectifiers
or a limiter differs in detail but retains the same gen-
eral characteristics.

In the case of a perfect limiter, it is immaterial which
type of rectifier is used in the frequency detector, and
also whether the detector is balanced, because the
amplitude modulation is removed from the composite
signal. If the undesired signal is the weaker (k¥ <1), the
remaining frequency modulation yields the output

January

E, = E/ desired signal

+ (E"—E) [k cos (3" —b") beatnote
— k% cos 2(b"—d")
+ k2 cos 3("—b") — - - - ]. 2)

There is no crosstalk from the weaker signal, because
the average frequency is that of the stronger signal, as
noted with reference to Figs. 3 and 4. The beatnote
and its harmonics have the waveform of Fig. 4(c).
The harmonics are unimportant if there is a substan-
tial difference of signal strength. This case differs
from the preceding case in that the beatnote ampli-
tude and frequency are both modulated in step, be-
cause both are proportional to the difference of the
two modulating voltages (E"—E’).

Fig. 6 shows for comparison two of the examples of
Fig. 5, but for the case of a perfect limiter. For the
undesired signal weaker, only the beatnote appears
with its harmonics. The general shape of the wave-
form is inverted relative to the corresponding example
in Fig. 5. With the undesired signal stronger, the cross-
talk appears in full strength and the beatnote peaks
are inverted. The transition between these two condi-
tions is a critical test for equality of the two signals, if
a limiter is used which has nearly ideal properties.

The case of linear rectifiers is the most difficult of
analysis because its output terms involve elliptic inte-
grals, as does also its factor of automatic volume con-
trol which maintains uniform the average voltage of
the composite signal. Also the two signals cause dis-
tortion of each other. However, the behavior which is
most closely identified with the use of linear rectifiers
is easily expressed if one signal is much weaker than
the other. It is assumed that the undesired signal is
the weaker (k<1).

For one approximate expression with linear recti-
fiers, the only assumption is a difference of signal
strength so great that the second and higher powers of
k are negligible.

E4= E]_’
+ EE\" cos (" —b")

desired signal

beatnote. (3)

On these assumptions, the crosstalk from the weaker
signal E," is lost, as well as the distortion and masking
effects on the desired signal. The harmonics of the
beatnote are also lost. There remains only the replica
of the desired signal E;’ and the fundamental com-
ponent of the beatnote interference. It is noted that
the amplitude of the beatnote depends on the modu-
lating voltage E,” of only the undesired signal, not of
both signals as in the preceding cases. The beatnote
disappears during interruptions in the modulation of
the undesired signal.

For another approximate expression with linear rec-
tifiers, only the third and higher powers of k are neg-
lected, but the desired signal is assumed to be
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unmodulated (E,’=0) so only the interference re-
mains.
2

E4 = '—2‘E1”

crosstalk

+ E” [ k cos (" —b") beatnote

—-izcos 200" =d") + - - ] 4

Here it appears that all three terms have coefhicients
midway between the corresponding terms in (1) for
square-law rectifiers and those in (2) for a limiter, on
the same assumption that the desired signal is unmod-
ulated. The fundamental beatnote term, on these
assumptions, is the same in all cases. The crosstalk
term is twice as great with square-law rectifiers but
absent with a limiter. The second harmonic of the
beatnote is twice as great with a limiter but absent
with square-law rectifiers.

Since the composite signal comprising both of the
frequency-modulated signals has both amplitude and
frequency modulation, and since the three cases stud-
ied differ only in their response to amplitude modula-
tion, a comparison of these cases enables the effects of
amplitude modulation to be identified separately from
those of frequency modulation. The desired-signal
output is the same in all cases if the undesired signal
is much weaker, so the comparisons are based on the
interference terms.

The crosstalk comparison for the cases with a lim-
iter or with linear or square-law rectifiers is based on
(1), (2), and (4), assuming the desired signal unmod-
ulated and the undesired signal slightly weaker so the
third and higher powers of k sre negligible. The cross-
talk terms in these cases are summarized as follows:

(limiter) 0 E/ (2a)
k2

(linear) Py E/" (4a)

(square-law) k* E (1a)
k2

(amplitude effect) — E". (5a)

The amplitude effect is the difference between the
limiter and linear cases, or one half the difference be-
tween the limiter and square-law cases. Since the
crosstalk is absent with a perfect limiter, it appears
to be caused by the amplitude modulation in the com-
posite signal. It is twice as great with square-law as
with linear rectifiers, because the square-law rectifiers
are doubly sensitive to amplitude modulation.

The comparison of the beatnote fundamental com-
ponent for the three cases is based on (1), (2), and (3),
assuming only that the undesired signal is sufficiently

Wheeler: Common-Channel Interference Between Two F-M Signals 39

weak to make negligible the second and higher powers
of k.

(limiter) (E\"—Ey') k cos (b"—b") (2b)
(linear) E\" k cos (3"—b") (3b)
(square-law) (Ei"+Ey') k cos (b"—0") (1b)
(amplitude effect) E;’ k cos (" —b"). (5b)

Again, the effect of amplitude modulation is merely
the difference between the limiter and linear cases, or
half the difference between the limiter and square-
law cases. The significance of this effect remains to be
described further on in this discussion. Its cause is not
obvious and seems not to be susceptible of simple ex-
planation.

The comparison of the beatnote second-harmonic
component is based on (1), (2), and (4), again assum-
ing the desired signal unmodulated and neglecting the
third and higher powers of &.

(limiter) — R2E," cos 2" —b") (2¢)
(linear) - 72 Ey" cos 2("—1b") (4c)
(square-law) — 0FE," cos 2(b"—b") (1¢c)
(amplitude effect) -+ I;—2 E," cos 2(b"—0b"). (5¢)

Here the effect of amplitude modulation is derived in
the same manner. It is interesting but this term is of
secondary importance in practice.

These three comparisons show that the limiter and
square-law cases are the two extremes, while the linear
case is intermediate. The limiter case has no crosstalk,
while the square-law case has no beatnote harmonics.
The linear case is least simple because it has all terms
and because the exact expression of the coefficients
involves transcendental factors such as elliptic inte-
grals. Each of the three comparisons is based on ap-
proximations chosen to show the intermediate value
of the coefficient in the linear case. In general, this
represents a tendency rather than an exact rule. For
comparison with the frequency effects expressed alone
in (2), the approximate amplitude effects are sum-
marized as follows:

k2
5 E/ crosstalk
+ %k E cos (B"—1b") beatnote
2
+ r3 E\” cos 2(b"—b’). (5)

These terms are present, in addition to the frequency
terms (2), with linear rectifiers and no limiter. They
are doubled by changing to square-law rectifiers and
are removed by the insertion of a perfect limiter pre-
ceding the detector.

There is a particular significance to the fundamental
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beatnote term in (5), the only important one of the
amplitude terms if the undesired signal is much the
weaker. The amplitude of this beatnote term is pro-
portional to the frequency modulation of the desired
signal, which is the stronger signal and therefore deter-
mines the average frequency of the composite signal.
The unbalancing of the frequency detector by the
frequency modulation of the stronger signal is a rea-
sonable explanation of the amplitude detection
responsible for this beatnote term.

V. THE CoNICAL PATTERN

While the desired signal and the crosstalk have ob-
vious significance in the detector output, it is difficult
to interpret the beatnote as to its interference effect.
This is especially true in wide-band frequency modula-
tion, the beatnote being inaudible part of the time.
As an aid in testing and interpreting the beatnote
interference, the conical pattern is to be described
with its various forms and uses.

il

(a) Square-iow rectifiers

-

Ul

(b)Y Limiter

Fig. 7—The output of Figs. 5 and 6 for k=1/2 but plotted against
the beat frequency to form a conical pattern,

Fig. 7 shows two examples of the conical pattern.
They are based on Figs. 5 and 6, but are traced not
against time but rather against the modulating volt-
age of the undesired signal. The desired signal being
unmodulated, the beat frequency is proportional to
the modulating voltage of the undesired signal. There-
fore the output is effectively plotted against the fre-
quency of the beatnote, and this pattern shows the
relation between the amplitude and the frequency of
the beatnote. Fig. 7 is computed for k=%, with (a)
for square-law rectifiers as in Fig. 5 and (b) for a lim-
iter as in Fig. 6.

Each of the curves in Fig. 7 is called a “conical pat-
tern” because it is the lateral projection of a three-
dimensional curve traced on a conical surface by a
vector which rotates about the axis of this surface.
This vector rotates at the beat frequency, and shifts
along the axis at a distance from the center propor-
tional to the beat frequency. In Fig. 7, its amplitude is
also proportional to the beat frequency, so its point
travels on a conical surface. The conical pattern was
originated to show just what appears in Fig. 7, the
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proportionality between the frequency and amplitude
of the beatnote caused by a weak component of noise
superimposed on a strong unmodulated carrier of the
desired signal.

The conical pattern is most easily shown on an oscil-
loscope. The output of the receiver and the frequency-
modulating voltage of the undesired signal are applied
to the respective vertical and horizontal deflecting
plates. The modulating frequency and the extent of
frequency modulation are usually not critically related,
so the pattern appears not as a steady repetitive trace
but rather as a trace shifting within the envelope of the
pattern. This does not decrease the value of the pattern
for showing the relation between frequency and ampli-
tude of the beat note. An oscilloscope having a screen
of long persistence is advantageous in observing the
envelope rather than the trace itself.

The conical pattern is most distinct if the modulat-
ing frequency is much less than the extent of frequency
modulation, as in Fig. 7. Otherwise the conical pattern
is indistinct, unless there are superimposed a sufficient
number of noncoincident traces to determine the en-
velope. The envelope loses its sharp corners if there is
a low-pass filter following the detector, even though
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(d) Same except gradual cutoff.

Fig. 8—Conical patterns showing the effect of low-pass
filters after the detector.

this filter has a cutoff frequency slightly higher than
the highest frequency of the beatnote. This distortion
of the envelope is caused by the failure to retain the
sidebands outside the width of frequency modulation,
which spread out farther during rapid modulation. If
the beatnote has strong harmonics, the envelope is
distorted also by the loss of these harmonics.
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In Fig. 8 are shown some examples of the conical
pattern in its practical applications. In each case, the
modulating frequency is sufficiently low to give a sharp
outline of the pattern. Fig. 8(a) shows merely the con-
ical envelope without distortion. Fig. 8(b) shows the
effect of a sharp-cutoff low-pass filter which passes the
beatnote only while the beat frequency is less than
the cutoff frequency. This filter is intended to pass as
much of the audio range as is needed for adequate re-
production. The conical pattern shows clearly the ac-
companying reduction of the peak amplitude of the
beatnote interference.

If the transmitter employs pre-emphasis of the
higher frequencies of modulation, this is compensated
by a restoring filter in the receiver. The restoring
filter merely attenuates the higher frequencies within
the audio range. Its effect on the beatnote output is
shown in Fig. 8(c), including a further reduction of
the peak amplitude. In practice, the low-pass filter is
more likely to have a gradual cutoff which, with the
restoring filter, gives a conical pattern of the shape of
Fig. 8(d).

The interference effect involves the variation of au-
dibility of the beatnote during the modulation of its
frequency. Knowing the characteristics of audition
and the frequency scale of the conical pattern enables
an estimation of the beatnote interference in terms of
its audibility. Such an estimate should take into ac-
count also the time during which the beatnote is audi-
ble.

The conical patterns of Figs. 7 and 8 are observed
with the unmodulated desired signal on the mean fre-
quency of the modulated signal, so the patterns are
symmetrical. The center point indicates the occur-
rence of equality between the frequencies of the two
signals and the center frequency of the balanced de-
tector. In the case of a limiter in the receiver, formula
(2), it is found that the amplitude of the beatnote is
proportional to its frequency, regardless of the tuning
relative to the frequency detector, so the crossover
point on the envelope always represents equality be-
tween the signal frequencies, or zero beat.

Relying on this relationship, Fig. 9 shows the effect
of detuning the unmodulated signal. The conical pat-
tern is symmetrical (a) while the unmodulated signal
is on the mean frequency of the modulated signal, but
departs from symmetry as the unmodulated signal is
detuned toward the lower limit of frequency modula-
tion, through (b) to (c). The apex or crossover point
of the envelope moves to one edge of the pattern (c)
as the unmodulated signal is detuned to the limit of
frequency modulation. This gives a critical test for
comparing the frequency modulation of one signal
against the steady frequency of another. It is most re-

§ M, G. Crosby, “The service range of frequency modulation,”
RCA Rev., vol. 4, pp. 349-371; January, 1940. (The pre-emphasis
and restoration of the higher audio frequencies in the modulating
signal, his Figs. 4 and 5.)
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liable if the modulated signal is weaker than the un-
modulated signal, so the conical pattern is nearly
horizontal, and the signals differ in strength enough so
the requirements on the limiter are not too severe,
Such a test is needed for checking the performance of
a frequency-modulated signal generator, and would be
valuable as a monitor in a transmitter.

(@)

(b)

()

Fig. 9—Conical diagrams showing the effect of detuning an un-
modulated signal relative to a frequency-modulated signal.

The detuning of the unmodulated signal during
modulation of the other signal gives some indication of
what happens to the beatnote amplitude during mod-
ulation of both signals. In general, this depends on the
limiter and detector properties of the receiver, Fig. 9
being valid only for a receiver with a limiter.

Fig. 10 shows the outer limits of the conical en-
velope with both signals modulated, in the three cases,
of a limiter (a), linear rectifiers (b), or square-law rec-
tifiers (c). These patterns are traced against the dif-
ference of the two modulating voltages (E,"—E;’) so
the horizontal displacement is still proportional to the
beat frequency. The coefficient of the beatnote term
in each of (2), (3), and (1) is used to determine the
maximum beatnote amplitude at any beat frequency,
both signals being modulated within the same limits
(E{ and E,” between —1 and +1). The maximum
beat frequency occurs with opposite maximum modu-
lation of the signals, so it is double the maximum
modulation (£f.). It is accompanied by maximum am-
plitude in the case of a limiter (a) or minimum in the
case of square-law rectifiers {c). In the cases without
a limiter, it is important that both signals are tuned
to the frequency detector. In the case of linear recti-
fiers (b), the amplitude is modulated only by the un-
desired signal E,", so the peak amplitude of the beat
note is the same for all beat frequencies.

The differences among the three cases are present
only during simultaneous modulation of both signals,
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and are caused by (5b) identified with amplitude de-
tection accompanying the frequency detection. They
are associated with the idea that the departure of the
stronger signal from the center frequency unbalances
the frequency detector, leaving it sensitive to the beat-
note amplitude modulation. The greatest amplitude
of low-frequency beatnote occurs while both signals
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Fig. 10—Conical diagrams showing the maximum amplitude of
beatnote during modulation of both signals.
(a) limiter
(b) linear rectifiers
(c) square-law rectifiers.

are modulated in the same sense and to the maximum
extent, so the detector is furthest from balance.

The shaded areas in Fig. 10 show the region passed
by a low-pass filter similar to that used as a basis for
Fig. 8(b). The remaining peak amplitude of the beat-
note is least with a limiter (a) and greatest with
square-law rectifiers (c). This is in contrast to the beat-
note amplitude with one signal unmodulated, which
is nearly independent of the limiter and rectifier prop-
erties in the receiver. This distinction has little prac-
tical significance, because the output of the stronger
signal usually obscures such beatnote interference as
is caused by its modulation.

VI. THE COMPARISON OF CROSSTALK AND
BEATNOTE INTERFERENCE UNDER
VAaR10Us CONDITIONS

Having shown the general characteristics of the
output in response to two signals, there remains to
present graphically the relative importance of the
crosstalk and beatnote interference, depending on the
relative strength of the two signals and on the proper-
ties of the limiter or of the detector. First, the response
of all kinds is to be summarized for the limiter and
square-law cases, then the crosstalk output is to be
compared for the various cases.

In the case of a perfect limiter, Fig. 11 shows the
peak amplitude of all terms relative to that of the de-
sired signal alone. Each term is evaluated during
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modulation of only one of the two signals. The desired
signal (a) has its normal value, unless the undesired
signal is stronger and therefore completely masks the
desired signal. The crosstalk (b) is absent if the de-
sired signal is the stronger, but otherwise completely
displaces the desired signal. The beatnote funda-
mental component (¢} has a maximum value for both
signals equal. In general, its relative peak value is
equal to the voltage ratio of the weaker signal over the
stronger. The beatnote harmonics add to the funda-
mental, their total peak value becoming indefinitely
great for equal signals.

A low-pass filter reduces the peak value of the beat-
note fundamental in the ratio of its cutoff frequency
over the maximum frequency modulation f,/f., as
shown in Fig. 8(b). This is exemplified by Fig. 11(d)
for a ratio of 1/5; the low-pass filter may have a sharp
cutoff at 15 kilocycles, the upper limit of the audio
range, with maximum modulation of 75 kilocycles.

If there is also a restoring filter, of nominal cutoff
frequency f., and if its cutoff frequency is less than
that of the low-pass filter, there is a greater reduction
of the beatnote approximately in the ratio f./f, as
shown in Fig. 8(c). This further reduction is indicated
in Fig. 11(e) for a ratio of 1/50, the restoring filter
having a gradual cutoff at 1.5 kilocycles.
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Fig. 11—The relative peak output of the individual components in
the case of a perfect limiter.
(a) desired signal
(b) crosstalk
(c) beatnote fundamental component with no low-pass filter
(d) same with added low-pass filter, fo=f./5
(e) same with added restoring filter, f, =f./50.

The discontinuities in the curves of Fig. 11, at the
condition of two equal signals, are caused by the as-
sumption of a perfect limiter. In practice, this assump-
tion fails at this condition, so the curves are rounded
off and there is some overlap between the desired signal
(a) and the crosstalk (b). These discontinuities are
absent in the square-law case and are less severe in the
linear case.

In the case of square-law rectifiers, Fig. 12 shows the
same relative peak amplitude of the output terms. A
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perfect automatic amplification control is assumed to
hold uniform the mean-square value of the composite
signal voltage, to make this case comparable with that
of a perfect limiter. The desired signal (a¢) and the
crosstalk (b) overlap but the stronger signal is fav-
ored very much. There is no effect of the stronger sig-
nal masking the weaker, as occurs in the limiter, but
there is a similar effect of the stronger signal attenu-
ating the weaker through the automatic control. The
beatnote curves correspond to those of Fig. 11, (¢)
without any low-pass filter, (d) with the low-pass filter,
and (e) with the restoring filter. In this case, there are
no beatnote harmonics.

In each of Figs. 11 and 12, the crosstalk curve (@)
and the beatnote curve (b) add up to unity. This is
true as a general rule, on the assumption that there is
either a perfect limiter or a perfect automatic volume
control using a rectifier of the same type as those in the
frequency detector.

The case of linear rectifiers is intermediate in be-
havior, somewhere between Figs. 11 and 12. All three
cases have nearly the same beatnote interference, on
the same assumption that only one of the two signals
is modulated at a time. The more interesting compari-
son among the three cases therefore is their crosstalk
interference.

Fig. 13 gives a comparison of the crosstalk inter-
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Fig. 12—The relative peak output of the individual components in
the case of square-law rectifiers.
(a) desired signal
(b) crosstalk
(c) beatnote with no low-pass filter
(d) same with added low-pass filter, fa=fc/5
(e) same with added restoring filter, f,=7./50.

ference for several cases. With the undesired signal the
weaker (kE<1), the perfect limiter avoids any cross-
talk (a), and that from linear rectifiers (b) is half as
great as that from square-law rectifiers (¢). The curve
(b) is computed from elliptic integrals and involves
the assumption of an automatic control holding uni-
form the average voltage of the composite signal.
Practical cases are likely to fall between the case of
a perfect limiter (¢) and that of linear rectifiers (b),
because nearly linear rectifiers are used with an im-
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perfect limiter, a perfect limiter being impossible of
realization. The practical limiter is imperfect in two
respects, a failure of limiting action below a certain
threshold value, and a departure from uniform output
above the threshold value. (Other imperfections such
as departure from instantaneous action are here neg-
lected.) If the limiter action is level above the
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Fig. 13—The relative peak output of the crosstalk component.
(a) perfect limiter
(b) no limiter, linear rectifiers
(c) no limiter, square-law rectifiers
(d) limiter with threshold at 1/2 amplitude of desired signal
(e) square-root limiter and linear rectifiers.

threshold and the desired signal is at least double the
threshold voltage, no crosstalk can occur unless the
undesired signal exceeds one half the desired-signal
voltage. This limit is indicated in Fig. 13(d). If instead
the limiter has a slope halfway between level and lin-
ear, the crosstalk output approaches one half that of
the linear case. This is called the “square-root” case,
describing its slope of one half, and is indicated in Fig.
13(e). Favorable conditions in practice are likely to
fall between (a) and (d).t

The peak amplitude of the crosstalk is less than
that of the beatnote in all cases, if both are less than
(f+/f.)? times the peak amplitude of the desired signal.
Under the assumptions of maximum frequency modu-
lation, f. = 75 kilocycles, and the restoring filter, f,=1.5
kilocycles, the beatnote predominates if both inter-
ference terms are at least 78 decibels below the desired
signal. This relation is based on Fig. 12 for the square-
law case, which has the greatest crosstalk. This ratio
becomes 2(f./f.)? or —72 decibels in the case of linear
rectifiers.

The relative audible interference from the crosstalk
and beatnote depends on the kind of program and the
requirements of reproduction. For the same peak
value, the crosstalk and beatnote are of comparable
audibility, but the spitting sound of the beatnote tends
to make it the more detrimental. If it is necessary to

¢ [, R. Weir, “Field tests of frequency and amplitude modulation
with ultrahigh-frequency waves,” Gen. Elec. Rev., vol. 42, pp. 188-

191; May, 1939; and pp. 270-273; June, 1939. (The common-chan-
nel interference between two signals, his Figs. 9 and 10.)
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hold the interference at least 70 or 80 decibels below
the desired signal, the beatnote is the determining fac-
tor, and the presence or absence of a limiter is unim-
portant. If more interference is tolerable, the crosstalk
is the determining factor and it can be reduced by a
limiter.

Increasing the bandwidth of frequency modulation
(2f.) for the same bandwidth of the modulating signal
(f.) has no effect on the crosstalk but does enable the
reduction of the beatnote output by a low-pass filter
after the detector. Such a filter attenuates the beat-
note during the time in which the beat frequency is
outside the frequency band occupied by the modulat-
ing signal.

VII. THE DERIVATION FOR ONE SIGNAL IN
Various TypEs oF FREQUENCY DETECTORS?

The theoretical derivation is simplified by the use
of the zero-frequency carrier. This procedure has been
shown to yield the practical solution, even in cases of
unsymmetrical sidebands as in frequency modula-
tion.? The carrier frequency does not appear in the
statement of the problem or in its solution.

In this derivation, no specific form of modulating
signal is assumed. This avoids the usual limitation to
a sinusoidal modulating signal. This generalization ac-
tually simplifies the expression of the solution.

The modulating signal, E;(¢) in Fig. 1, has any varia-
tion with the time ¢, subject to some limitation on its
bandwidth. (In sound transmission, it is the audio-
frequency input signal.) The frequency modulator M
is regarded as operating on a carrier of unit amplitude
and zero frequency. Therefore the frequency deviation
is the same as the frequency f of the modulated signal
E,(¢). This frequency deviation is proportional to the
modulating signal

f@) = f.E(®) (6)

in which f, is the deviation per unit voltage of E;.

The three forms of frequency symbols are used in-
terchangeably, whichever fits into the expression at
hand:

w=2xaf; p=1tw=1ilxnf @)

in which w is the angular frequency and p corresponds
to the differential operator D, with respect to time.

The modulated carrier has a phase angle b related
to the frequency modulation as follows:

db

— = w = wkE 8
a ' ®

t ¢
b =by + f wdt=b0+wcf E,dt (O]
0 °

7 J.R. Carson and T. C. Fry, “Variable frequency electric circuit
theory with application to the theory of frequency modulation,”
Bell Sys. Tech. Jour., vol. 16, pp. 513-540; October, 1937.

8 H. A. Wheeler, “The solution of unsymmetrical-sideband prob-
lems with the aid of the zero-frequency carrier,” Proc. I.R.E., vol.
29, pp. 446-458; August, 1941.

January

in which b, is the phase angle at t=0. The progressive
phase angle b henceforth includes both frequency and
time variables. The modulated carrier is represented
by the vector

E, = exp ib = cos b + ¢ sin b. (10)

There are several types of balanced frequency de-
tectors to be considered, as described with reference
to Fig. 2. They differ in the kind of slope filters and
the kind of rectifiers. Without loss of generality, the
same f, is taken as the intercept frequency of the slope
filters.

The linear slope filter of Fig. 2(a) has the filter fac-
tors

1 .
RO T A P RE A o

22, 2 2 2. 2,
in which the + and — subscripts denote the two sides
of the balanced detector. Each of these factors changes
between zero and unity between the intercepts at
+f.. The fact that the slope continues over negative
and positive values of the filter factor denotes the
use of a resonant trap in each filter.

The filter factor on each side is expressed in terms
of the differential operator and then applied to the
modulated voltage E, to secure the differentiated
voltages Esy and Es_ in Fig. 1:

Fi=?i—£=—2—_5;c— ¢ (12)
Esy =<——1—J_r ! D,>E2=—1—expibi i -ﬁexpib
- 2 2p. 2 2p. dt
=(i i—l—El> exp b (13)
2 2

This shows the amplitude modulation superimposed
on the frequency modulation by the slope filters.

This application of the differential operator p is
common ground between Heaviside operational meth-
ods and Fourier integral methods.%!? In this case, it
is the same as the transformation

ar
E=(R+joLl)I=(R+Lp)I=(R+L-D)I=RI+L % (14)

in which E is the voltage, R is the resistance, L is the
inductance, and I is the current having any variation
with the time ¢, and D, means d/dt.

The resulting voltages E3, and E;_ are delivered to
the rectifiers, which are linear rectifiers in this case.
Since the unrectified signal is expressed as a modulated
zero-frequency carrier, its magnitude is the signal en-
velope to which the rectifier responds. The magnitude

% Vannevar Bush, “Operational Circuit Analysis,” 1929. See
pp.lg Z}Z 1A Campbell and R. M. Foster, “Fourier integrals for
practical applications,” Bell Telephone System Monograph B-584,

September, 1931. Abridgment, Bell Sys. Tech. Jour., vol. 7, pp.
639-707, October 1928. See Table I, No. 208.
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of Es, or E;_ carries an amplitude modulation which
is proportional to the modulating signal E;.

The linear rectifiers produce output voltages E4 and
E,_ equal to the envelope amplitudes of the differ-
entiated signals, in this case the magnitude of the
voltages Esy and Ej;._:

Ey =| Ess| =| 3 £ 3E (15)

as shown in Fig. 2(b). The output voltage E, from the
balanced detector is the differential output of the rec-
tifiers:

Ei=Ey — E =|}+3E| —|} —3E|. (16)

This has a range of linear proportionality limited by
the intercept frequencies, in which the output is equal
to the modulating voltage:

—fe<f<[f; —1<E<I;

as shown in Fig. 2(c).

In this derivation, it is notable that the bandwidth
between the intercept frequencies +f, need be only
sufficient to include the maximum value of the devia-
tion f. The marginal sidebands outside of this width
2f. do not require a further separation of the intercept
frequencies but do require a continuation of the linear
slope as far out as the sidebands are appreciable.

The next case is that of the same linear slope filters
with square-law rectifiers, as shown in Fig. 2(d) and
(e). The rectified voltages are taken equal to the
square of the signal magnitudes:

E4 = E1 (17)

Ei =|Ee|” = G+1E)' = } + 1B + 3B (18)
The differential output is simply
Ey= Ey — E, = E. (19)

This is valid over an unlimited range, irrespective of
the intercept frequencies of the slope filters. Therefore
this type of balanced frequency detector is ideal for
theoretical purposes.

The remaining case is that of square-law slope
filters and linear rectifiers. The slope filters have the
form of Fig. 2(d) and the differential output has the
form of Fig. 2(e). The filter factors are those of (11)
and (12), squared:

F; = <’1"+L>2=i T A &
* 27 2. 47 2p.  4p?
11
=—+— D+ De. (20)
4 7 2p, 4p2

This factor requires two resonant traps at the inter-
cept frequency in each of the slope filters. Applying
this factor to E,, the differentiated voltages are found
to be

1 1 1 1 4dE;
E;; = ('Z + ’2—E1 + ZE12 + '*‘) exp ib. (21)

4p, dt
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The output of each linear rectifier is the magnitude

Ey = !‘]; + _1E1 +iE12 +~1— @
- 4 2 4 4p, dt
ety et g,
2 2 4p. dt

If the modulating voltage E, has only slow variations,
the differential output is simply Ej, as in the preceding
case. However, such an assumption is not generally
justified, in which case the peak value of E; must be
held less than one, by an amount sufficient to assure
the first of the last two terms exceeding the second. It
is concluded that this type, because of its double dif-
ferentiation, gives a linear output which is reliable
over a lesser range of modulation than the first type
with linear slope filters and linear rectifiers.

The theory of these three types of balanced fre-
quency detectors indicates advantages for the first and
second types. The first type, with linear slope filters
and linear rectifiers, has the advantage that an undis-
torted replica of the modulating voltage appears in
each of the rectifiers, so a departure from balance
leaves no distortion of the output. This type has the
disadvantage of operating over only a limited range
of frequency modulation. The second type, with linear
slope filters and square-law rectifiers, is ideal for theo-
retical purposes because it has an unlimited range of
operation, and because square-law rectifiers are most
susceptible of mathematical treatment. It has the
practical disadvantages that square-law rectifiers are
less efficient. Also they cause distortion in each recti-
fier so exact balance is required to secure an undis-
torted output.

These two types of detectors are denoted simply the
linear and square-law types, referring to the rectifiers;
both types have linear slope filters.

With only one signal and ideal conditions, the pres-
ence or absence of a limiter is immaterial, because the
signal amplitude is uniform.

VIII. Tae DERIVATION For Two SIGNALS IN A
SQUARE-LAW FREQUENCY DETECTOR

Each of the two signals has the form of the one sig-
nal in the preceding section. The desired and unde-
sired signals are identified by superscripts (" and ") as
in Fig. 1.

For the study of common-channel interference,
these two signals are to be superimposed. The desired
signal E.’ has unit amplitude while the undesired sig-
nal E;” has a relative amplitude &, constant and usu-
ally less than 1. The composite signal is

E; = E)/+E)" = exp ib’ + k exp ib”. (23)

Referring to equations (12) and (13) for the linear
filter factors and the form of the differentiated signal,
the composite signal becomes
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Esy = (3 + 3E) exp i’ + k(3 + 3E\") exp id"
=[G £3E)+EGEIES) expi(s ~5) ] exp .
The square-law rectified voltages are the squared mag-

nitudes of the coefficient in brackets [ ], since exp b’ is
a unit vector.

Ey =| Eus|*=[G£3E)+EG L3E") cos (0" —b)]*
+ [k} + 3E") sin (¢ — 8)]?
= (i £ 3B+ iE1'2) + A3 £ 3B+ 1E")
+2k(F 1B L E"+LEEY") cos (B —b').  (25)
In the differential output, all except the + terms can-

cel out, leaving simply

E4 = E4+'—E4_
= E/ desired signal
+ Ek2E,” crosstalk

+ k(E) 4+ Ey") cos (8" —b") beatnote. (26)

As is characteristic of square-law rectifiers, the desired-
signal output is unaffected by the presence of the un-
desired signal. The crosstalk output is free of distor-
tion and proportional to k2. The relative phase of the
two carriers is noncritical.

The beatnote interference is unusual in its proper-
ties. It is a sinusoidal wave whose amplitude and fre-
quency are modulated by both signals. Its frequency is

1 4
fll _f/ - (bl/__b/) =fc(E1”—E1’). (27)
27 dt
This is the instantaneous difference of the two fre-
quency deviations, so it is determined by the fre-
quency modulation of both signals. In speech modula-
tion, the beatnote interference is heard as an irregular
harsh rasping noise having only syllabic relation to
the modulating signals. In wide-band modulation, the
beatnote is inaudible some of the time.

Under the influence of automatic volume control
(not the same as a limiter), there is manifested a block-
ing effect of either signal on the other, as shown in
Fig. 12. The total power of the two signals is 142, and
the square-law rectifier response is proportional to the
power. Dividing the output voltage (19) by this factor
gives the relative amplitudes when subjected to an
action which maintains uniform the average power
input to the frequency detector.

E, 1 E/ + k? ES
14+ 148 5 14p "
+ (E/+E") cos (5'—8").  (28)

1+ k2

The curves of Fig. 12 are plotted in terms of peak val-
ues of output for E;’ or E,’ having unit peak values.
Curve (a) is the blocking of the desired modulation by
the undesired carrier unmodulated. Curve (&) is the
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reverse effect, the crosstalk from the undesired modu-
lation while the desired carrier is unmodulated.

While the mean or effective value of the beatnote
interference is difficult to compare with the desired
modulation, its peak value is interesting and can be
expressed for some cases. The maximum amplitude of
the beatnote occurs when the amplitude coefficient
(E{/+E,") in (26) has its maximum value of two, and
the frequency coefficient (E,” —E;’) in (27) is small;
this means when both signals have maximum modula-
tion of the same polarity and nearly but not exactly
the same amplitude. The relative peak value of beat-
note interference, while both signals are modulated, is
therefore independent of the bandwidth of modula-
tion, but the relative mean value and average audibil-
ity is reduced by wider modulation. This is shown in
Fig. 10(c), in which the peak amplitude of the beat-
note is plotted against the beat frequency.

If only one signal is modulated, as for the curves of
Fig. 12, the peak value of beatnote interference is
reduced by wider modulation which increases the beat
frequency beyond the range of audibility. The audi-
bility decreases so rapidly above 5 kilocycles, that a
low-pass filter may be assumed following the detector
with a cutoff frequency f, of about 5 kilocycles. Such
a filter may be present, or may be approximated by a
high-audio-frequency attenuator intended to com-
pensate for emphasis in the transmitter. The maxi-
mum modulating voltage E; on either signal, which
produces a beat frequency fi not exceeding fo, is found
from (27) to be

Bu=t2t.
fC

The corresponding peak voltage of the beatnote inter-
ference, multiplied by the factor of automatic volume
control, is found from (28) to be

ke
1+ % f,

(29)

(30)

This peak value is plotted in Fig. 12 as curves (¢) and
(@) for the ratio f,/f. =1 and 1/10. This corresponds to
a maximum deviation f. one and ten times the audio
frequency f.

For laboratory studies, sinusoidal modulation is
most convenient. Therefore this case for frequency
modulation deserves an explicit solution of the inter-
ference waveform. The example chosen is the un-
modulated desired signal and sinusoidal modulation of
the undesired signal. The modulating wave is

E = m cos wnt (31)

in which m is the modulation factor such that the max-
imum deviation is mf.. The resulting frequency devia-
tion is, from (6),

" = mw, COS Wnl. (32)
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Assuming the initial phase angle by of each carrier is
zero in (9), the modulated phase angle is

¢ Mmw,
b = f W’dt = sin wpt. (33)
0 W
From (28), the output of the balanced detector is
E, k2
= m COS Wl crosstalk
1+ k2 1422
m Ccos wpt cos b’ beatnote. (34
o (34)

This is plotted in Fig. 5 for several cases. The desired
signal is not modulated. The crosstalk output is a
replica of the undesired modulating signal. The beat-
note output is expressed completely as follows:

Mo,
km cos wnt cos ( sin w,,.t) . (35)

Wm

The beat frequency is equal to the frequency deviation
given in (32), both its amplitude and its frequency
being modulated at the modulation frequency. In
wide-band modulation, a low-pass filter would cut off
the beatnote during part of the time, while its ampli-
tude and deviation are greatest, and the remaining
beatnote interference would be weaker and more ir-
regular. Even without the filter, it would be less audi-
ble. Therefore, while the audibility of the beatnote
interference increases with increasing weak modula-
tion, it tends to decrease with increasing strong modu-
lation which causes the frequency deviation to go
much beyond the audio-frequency range.

IX. THE DERIVATION FOR TWwO SIGNALS IN A
LinEAR FREQUENCY DETECTOR

The output of each rectifier in the linear frequency
detector is the magnitude of E;; given in (24). The
square of this magnitude, from (25), is

1 1+
(Eaz)? =| Eail ?= Z(l + E1')2[ 14 42 (T

El” 2
=)
1+ E/
+ 2k { ———=-} cos (b”—b’):l.
14 E (36)
Since the square root of the bracketed expression is
difficult to interpret, it is expanded in a series, includ-

ing only terms in the first powers of E,’ and E,”, and up
to the second power of k.

1+ E

/4
Ey =11+ E) {1 -+ k(l—___l_—E—ll,> cos (8" —b")
k2< 1+ B

5 >2[1—cosz(b”—b’)]+ SR }

1+ E/

1 k
=E(1-|_'E1’) + Py (1+ E/") cos (b"—b")
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2

+3 (1T E’ + 2E F 2E/'E,")

[1 —cos (2"=0") |+ ---. (37)
The differential output is
E,=E; — E,
k2
= B/ (1 vy + - ) desired signal
2
+ —2— E/" crosstalk
2
- E'E" mixed signal
k
+ B} Ey" cos (" — b") beatnote
2
_l_z (El’ . 2E1” + 2E1,E1”"" T )
cos (20"—-8") + - - -. (38)

Two cases of this expansion appear as (3) and (4). It
is complicated by the masking factor on the desired
signal, and by the distortion (harmonics and inter-
modulation) of both signals. Each coefficient is part
of an infinite series.

The automatic volume control in this case is also
assumed to have a linear rectifier, to correspond with
the detector. This control is substituted for the limiter
L in Fig. 1, and is assumed to maintain the average
value of the voltage E; at a uniform value of unity.
Rewriting (23), the composite signal voltage is

Ey, = exp ib’[1 + kexp i("—b")] (39)
and its magnitude is
| B| = /1 + k% + 2k cos (" —0)
=1+ 2k cos (b"—b")
k2
+74— [1 —cos2("=0N]+ - - -. (40)
The average value of its magnitude is
— 2 k?
B = —[2E®) — (1 — BE®] =1 +ot
T
4
- = k=1
T
= k (k>1) 41

in which K (k) and E(k) are respectively the complete
elliptic integrals of the first and second kinds."-% The

1 (Th 1 part of K or E is used for k>1.)

12 fghr?k?zngaEmde, “Tables of Functions,” 1933, chapter 15,

. 127, 145, 150. .
PP ‘} D7 Bierens de Haan, “New Tables of Definite Integrals,”
1867-1939. Table 67, (5) and (7); uses F” and E’ insteadof Kand E,
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value of E3; becomes

E; = _2 (42)
E;
which has an average value of unity.

The desired-signal output is reduced by two factors,
the masking factor (in parentheses) (38), and the fac-
tor 1/E,. Both factors cause more reduction with
increasing relative amplitude % of the undesired signal.

A precise evaluation of the differential output E,
also requires elliptic integrals. Instead of expanding
into a series, formula (36) may be rewritten,

Ey =31 + E)VT F B1® F 2kg cos =8y (43)
in which
k L+ E (44)
VIt R/

In order to remove the beatnote, E,; is averaged over
the beatnote cycle of (b” —b’), leaving only the modu-
lating voltages as they appear in the output of either
rectifier.

T = %(wm;z 2E(G) — Q—kDKGED].  (35)

This is obtained by the same elliptic integral as used
to obtain (41) from (40) above. The differential output
E, is to be expressed only for special cases.

The distortion of the modulating voltages E,’ and
E(" in the output complicates the solution, but adds
little of interest because the more important effects
involve the beatnote noise and the signal amplitudes.
The latter information is obtained with close approxi-
mation by solving for the case of small modulating
voltages:

E'K1E K],

The relation is used,!*

d 2 2
T [2E(R)—(1—F)K (k)] =— [E(R)— (1—E)K (k)]

T wk
k
= - (kK1) 47
2
=— (k=1)
=1 *k<K1).

On this basis, the differential output of the detector
(omitting the beatnote terms) is

4 Jahnke and Emde, footnote reference 12, pp. 128-129,

January

e d d
E,=Ey—E, = (E1' dE1’+E1” ok )(E4+—E4_)

2
= E," — E(k) desired signal
1 1r (%) g (48)

+ E/ 2 [E(k) — (1—k2) K(k)] crosstalk.

T

Applying the automatic-volume-control factor, the re-
sulting output is

E, E(k)— (1—k*) K (k) o
—=F’ ( 1— ) desired signal
E, 2E(k)—(1—E2)K (k)

+ E/ E(k) — U—RIK®) crosstalk. (49)

2E(k) — (1—-F)K (k)

This formula shows that the reduction of response to
the desired signal is equal to the increase of response to
the undesired signal. This crosstalk is plotted as Fig.
13(8).

In a like manner, the beatnote fundamental and
harmonic components can be evaluated in terms of
elliptic integrals. For present purposes, however, the
series expansion (38) is more useful.

X. THE DERIVATION FOR Two SIGNALS
IN A LIMITER

The limiter L in Fig. 1 receives the composite signal
voltage E; of varying amplitude. The action of the
limiter on this voltage is such that its output voltage
retains the instantaneous frequency of the input volt-
age but has a uniform amplitude of unity. This action
is conceived as a fast-acting control of amplification
which holds the signal envelope at a constant ampli-
tude.

The composite input voltage is

Ey=E'+ E" =expib + kexp ib"

= exp ib’[1 + & exp i(b"—3")]

= expib’[1 + kcos (8" —b") + ik sin (3" —b')]

=| E,| exp ib =| E;| exp ib’ exp i(8"—b’)
in which b is the progressive phase angle of the com-
posite signal and lEzl is the magnitude of the en-

velope. This phase angle is determined by the above
expressions:

(50)

ksin (b"—b")

tan (b—3') = 51
( ) 1 4+ % cos (3" —b") 5
. k sin (3" —b")
b = b’ 4+ antitan (52)
1+ kcos (3"—b")

Therefore the frequency of the composite signal is
_db_db' k2 + k cos (" —0") ( dav” db’)
Tdt dt 14EH2kcos (B —b)\ dt dt

k 4+ cos (0" —b’
= + ko — o) ( ) (53)

1+ k2 + 2kcos (5" —b')
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The output of the limiter is

E; = = exp b (54)

E,

| |
which is a signal of unit amplitude and of phase b or
frequency w.

While this signal could be subjected to the processes
in a frequency detector, this is unnecessary, because
the detector in this case would merely deliver an out-
put voltage proportional to the frequency (deviation).
Therefore the differential output of the detector is
w

E4=—'

We

(55)

This was proved for a signal of unit amplitude and
any frequency modulation in the case of one signal; it
is a conclusion from (17) and (19) in that case. In this
case, the detector output is

E,= E/ desired signal
k + cos (8" —b")

130089 4
+E( ) 1+k2+2k cos (0" —b")

beatnote. (56)

If the undesired signal is the weaker, £ <1, the second
term has an average value of zero, and therefore rep-
resents only the beatnote (fundamental and har-
monics) as indicated. On the other hand, if the unde-
sired signal is the stronger, £>1, it amounts to inter-
changing the two signals and inverting %:

E, = E/ crosstalk

1
— 4 cos (' —b")

beatnote.

1

— (Ey'— EY
+k(1 1)1+1+2 o "

TR cos ( (

These two solutions show clearly the effect of the
limiter in favoring the stronger of the two signals and
eliminating the other, as plotted in Fig. 11(e) and (?).
The beatnote is a harmonic series of the following form
for £ <1 (and corresponding form®" for 1/k <1):

k + cos (8" —b")
14 &2+ 2k cos (b"—0")
— k%2 cos 2(0"—b') + k¥ cos 3(0"—=b") — - - -.

= k cos (8" —b')

(58)

This beatnote series is included in (2) and the wave-
form is plotted in Fig. 4(c) on a scale which leaves the
fundamental component the same for various values

of &.

15 Crosby (footnote 4) in equation (7) and Fig. 4 shows the
harmonic waveform of the beatnote.

16 E. P. Adams, “Smithsonian Mathematical Formulae,” 1922.
On p. 82, no. 13 is the expansion needed to express the beatnote
in a Fourier series.

17 de Haan's table 50, item (5), is the integral form needed to
evaluate the coefficients of the beatnote Fourier series.
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The beatnote oscillates between the peak values

k
k<1 d———ry *;>1 d——— 59
( )H_kan - ( )k+1an — (59)
Its quadratic-mean (root-mean-square) value is
=vVik+E+E+ ) (k < 1). (60)

T V20— )

An interesting example is that of no modulation of
the desired signal and sinusoidal modulation of a
weaker undesired signal. Only the beatnote term re-
mains:

k + cos b”
E, = kE, k<1 (61)
14 k24 2k cos b’
in which
Mmee b’
¥ = sin wyt; o = = Mw, COS wxt. (62)
Wn dt

In these formulas, mw, is the maximum deviation,
wm is the modulating frequency, and «” is the beat fre-
quency. This output voltage E, is plotted in Fig. 6.

XI. CoNCLUSION

There are several types of balanced frequency de-
tectors capable of reproducing without distortion a
frequency-modulated signal. Two of these types em-
ploy linear slope filters, one with linear rectifiers and
the other with square-law rectifiers.

If a perfect limiter is assumed, it is immaterial which
type of frequency detector is used; otherwise the
choice depends on which type has the more desirable
behavior toward interference. Toward common-chan-
nel interference, the linear rectifiers give less crosstalk
from the weaker of the two signals. During modulation
of the stronger signal, the linear rectifiers give less beat-
note interference.

The different kinds of interference are subdivided
into frequency and amplitude effects. The frequency
effects are inherently associated with the ability to
detect the frequency modulation of the signals. The
amplitude effects can be avoided by the use of a lim-
iter; they are twice as great with square-law rectifiers
as with linear rectifiers.

The beatnote interference is caused by frequency
and amplitude modulation in the composite signal. Its
interference effect is mainly caused by the frequency
modulation, so it cannot be reduced very much by
avoiding the amplitude effects. It can be reduced by
using a bandwidth of frequency modulation exceeding
twice the bandwidth required by the modulating sig-
nal. ,

The crosstalk interference from a weaker signal is
caused entirely by the amplitude modulation in the
composite signal. It can be minimized by the use of a
limiter, and its amplitude from linear rectifiers is only
one half as great as from square-law rectifiers.

The conical pattern, especially well adapted for
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oscilloscope tests, is useful in observing common-chan-
nel interference and in comparing the frequency mod-
ulation of one signal with the steady frequency of
another.

The relations described have been verified by tests.
The waveform of the interference output has been
found to agree with Figs. 5 and 6, in corresponding
cases without and with a limiter. The conical diagrams
of interference output, Figs. 7 and 8, have been
reproduced on the oscilloscope under the various condi-

tions illustrated. The conical diagram of Fig. 9 has
been used in checking the amount of frequency modu-
lation in a signal. The crosstalk component has been
separated from the beatnote by a filter to test the rela-
tions of Fig. 13, both without a limiter and with lim-
iters of practical design. The beatnote amplitude, as
in Figs. 11 and 12, has been checked by oscilloscope
observations corresponding to Figs. 5 to 8. The nature
of the crosstalk and beatnote interference has been
verified in listening tests.



