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The Distortion of Frequency-Modulated Waves

o @ *
by Transmission Networks
A. S. GLADWINt}

Summary—A general solution to the problem of calculating the
distortion imposed on the instantaneous frequency of a frequency-
modulated wave in passing through a transmission network is ob-
tained by a direct operational method. Approximate formulas for the
cases of large and small deviation ratios are derived, and it is shown
that a range of overlap exists in practical cases. For very large devia-
tion ratios the distortion is entirely nonlinear in character and de-
pends on the maximum frequency deviation, while for very small
deviation ratios the distortion is entirely linear and is independent of
the frequency deviation. The nature of the distortion is examined
with particular reference to intermodulation distortion. When the
modulating wave consists of two sine waves of different amplitudes
and frequencies, intermodulation distortion takes the form of a fre-
quency modulation of the small high-frequency component by the
large low-frequency one. The application of negative feedback to a
frequency-modulation receiver is considered. Numerical examples
are worked out.

I. INTRODUCTION

HE DISTORTION suffered by a frequency-

modulated wave in passing through a transmis-

sion network has been investigated by Carson and
Fry,! who obtained a theoretical solution, and more
recently by Jaffe,? who calculated the numerical value of
the harmonic distortion for the particular cases of
sinusoidal modulation with networks consisting of either
a single resonant circuit, or a pair of resonant circuits
critically coupled and tuned to the carrier frequency.

These analyses apply to the case of a large deviation
ratio, but important practical cases exist in which the
deviation ratio is small; for example, a superheterodyne
receiver in which negative feedback is used to reduce the
frequency deviation of the received wave. Moreover,
in practice, transmission networks are more compli-
cated than those examined by Jaffe, and it is also
desirable to know the distortion produced when modu-
lating waves more complex than a single sine wave are
used.

It is the object of the following analysis to derive
formulas, suitable for both large and small deviation
ratios, from which numerical values of the distortion
products can be calculated for any type of transmission
network.

* Decimal classification: R.148.11. Original manuscript received
by the Institute, August 19, 1946; revised manuscript received, June
2, 1947. (This paper is a communication from the Staff of the Re-
search Laboratories of the General Electric Co., Ltd.,, Wembley,
England.)

t King's College, London, England.
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II. L1ST OF SYMBOLS

A(u) =amplitude characteristic of the network
(nepers)
D =deviation ratio=maximum frequency devia-
tion/highest modulating frequency
¢ () = phase characteristic of the network (radians)
p =differential operator =d/dt
P(u) =in-phase component of the network transfer
characteristic
Q(u) =quadrature component of the network transfer
characteristic
S =the modulating wave
T(x) = Y(jw)
u=(w—w)/wp
v,=Input to a network
vo=output from a network
wp=semibandwidth of the network (radians/sec-
ond)
w. =carrier frequency (radians/second)
Aw=maximum frequency deviation (radians/sec-
ond)
Y(jw) =steady-state complex transfer characteristic of
the network =output/input.

I11. THE GENERAL SOLUTION

Let the modulating wave be denoted by S, and let the
peak value of S be unity. A sinusoidal carrier wave fre-
quency modulated by S can be written

cos (w,t + Awf Sdl)
= R expj(w,t + Awf Sdt)

where w is the carrier frequency, Aw is the maximum
frequency deviation, and R denotes “the real part of.”
Conventionally, R is omitted from the analysis, but it
should always be understood.

When the modulated carrier is applied at the input
terminals of a linear transmission network having a

transfer characteristic Y(jw), the output from the net-
work is

Vs

Vo = Y(p)v.'.
Y(p) is the transfer characteristic with the differential
operat?r p=(d/dt) written in place of Jjw. Y(p) is an
operational function, and the output v, is obtained by
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operating on v; with ¥(p). This can be done conven-
iently by using Murphy’s shifting theorem? to give the
result

vy = expj(w,t + Awadt) Y(p + jw. + jAwS). (1)

The subject of the operational function is now unity.
It is supposed that the modulated carrier has been ap-
plied to the network for a very long time, so that the
transient solution Y(p)-0 has vanished at the time
under consideration.

Since most of the networks to be analyzed are band-
pass filters, it is convenient to express a frequency in
terms of its difference w —w. from the carrier frequency,
and also to express this difference as a fraction « of the
filter semibandwith wsg, i.e., # = (w —w.)/ws. The transfer
characteristic may then be specified in terms of a shape
function T'(u), a scale factor wg, and a position factor
we, thus:

V(jo) = Y(joe + jo — @) = V(jo. + juws) = T(w). (2)
Applying this transformation to (1) gives
AwS — jp)

wB

(o + jo. + jows) = 7

If it is assumed that this function can be expanded
in a power series by Maclaurin’s theorem, then

7 (Awa: jp) _ z:: % (Awa;' j”)"rn«)) 3)

where T(0) =d»/dt»T(u)|.=0. The expansion 1s valid
only if the series so obtained converges. In particular,
the series does not converge if S is a step function, or if
there are any discontinuities in T(x) or its derivatives.
The operator (AwS —jp) » denotes (AwS —jp) (AwS —jp)

- to n terms, and may be expanded as follows:

(AwS — jp) = AwS
(AwS — jp)? = (AwS — jp)AwS = (AwS)? — jAwS’

d
5= s).
dt
It is found that the terms in the series resulting from
the expansion of (3) are themselves the Maclaurin series

for functions such as T(AwS/ws). When all the terms
are collected in this way, (1) can be written

and so on:

. *A. G. Warren, “Mathematics Applied to Electrical Engineer-
ing,” Chapman and Hall, London, 1939; p. 169. The thcorem states
that Y(p) exp f(¢) -cxpji‘l) Y(p+/'(t)) both sides of the identity being
operational functions. The analysis can also be carried out, with a lit-
tle more trouble, by using the well-known Heaviside shifting theorem,
which is a particular case of Murphy’s theorem. This was lﬁe method
used by Jaffe.
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by = [expj<wet + o f S"’)][T(A:f )

Aw ( 7S’ AwS S AwS
___{ T,,( )_{_, Tm< )
wp (2lwp wB 3lwp? wp

481 AwS S AwS
I () S 8y
4!&33 wpB S!wg" wp
. Aw? 7S’ AwS
et ()
2wp?® 4wp wp
S” AwS 78" AwS
() ()
3!&)52 wg 4!w33 wp
KYi4 TV,I(AwS) n ] @)
Stwg’ o f
+ etc.]

This is the general solution, but in the form given
above it is of little practical use. The desirable form of
solution would express the result as a carrier wave modu-
lated in amplitude and frequency. Approximate solu-
tions of this form can be found when the deviation ratio
is large or small.

I'V. SoLUTION FOR LARGE DEVIATION RATIOS

When the deviation ratio is large, S’ /wp is small, and
the terms of the series in (4) are of rapidly decreasing
magnitude. Only the first two terms need therefore be
considered, and, if D is very large, only the first term.

It is convenient to express the transfer characteristic
in polar form: T'(u) =exp {A(u)+j¢(x)}, where A(u)
is the amplitude characteristic (nepers), and ¢(u) is the
phase characteristic (radians). The second derivative
T"'(u) is easily found and a common factor T(AwS/ws)
can be removed from the first two terms of (4), which
can then be written (neglecting terms beyond the sec-
ond) as

AwS
v = [exp A <~ -) expJ {wcl + Awadl
wp
AwS AwS’ AwS
AN ()
wp 2wp? wp
AwS AwS AwS
(o) ()
wp wp wp
. AwS\T? . . Aw.'S' 2
il O+ CIY]
wp wp

Of the series of terms in the square brackets, the
imaginary part is small compared with 1,and the vari-
able part of the real part is also small compared with 1.
The series may therefore be replaced by K exp ja, where

K is the real part, and a the imaginary part of the
series. Then

=M cxpj(w,l + ij w,d/)
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where

M =

AwS

[exp A < )
wp

AwS

+ 24 ,<__

[1 + AwS’ { ”<Aw5)
2wg? ¢ wp
AwS ))

(]

s
~——
<
/X

wB

X3

AwS
(GO ®
wp

M is the amplitude and Aww; the frequency deviation
of Vo.

If the transfer characteristics can be represented by
stimple functions and the modulating wave is also sim-
ple, it is sometimes possible to calculate the distortion
directly from (5). In general, however, this is not pos-
sible, and the transfer functions have to be expressed
in a form amenable to computation, e.g., a power series
expansion, thus:

u?
A(“) A0+1¢A|+;Az+...

(6)

2

n
¢o+1¢¢1+’2"¢2+"‘

é(n)

The quantity ¢, is the coefficient of the linear part of
the phase characteristic, and thus represents time delay
for the whole wave. It is advantageous to proceed as if
¢1 were zero and to correct the final result, if required,
for the time delay corresponding to ¢;. This reduces the
number of terms to be handled. The coefficients 4,4 and
¢, which represent a constant amplitude change and a
constant phase shift of the carrier, may also without
error be equated to zero.

The series expansion should represent the character-
istic accurately over a sufficient range of #; namely, a
range corresponding to frequencies slightly beyond the
frequency excursion of the modulated carrier wave.

When the series given by (6) are substituted in (5),
the distortion terms may be divided into three groups.
First, a linear term yhich is simply a derivative of S.
This is

"

(422 + 4).

wp?

Next, even-order nonlinear terms,

1 d (P2 /A0S \?2 ¢4 /A0S \*

LA oSy sy
Aw dt (2'\ wp 4!\ wp

1 d AwS
L4
2wp? dt wB

(45 + 24,4,)
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AwS \%/ 1 1
— A — A4A
+<w3)<6 6+3 i
+A3A2—‘¢3¢2)+"'}}‘

Finally, the odd-order nonlinear terms,
1 d AwS\* o5 /AwS \*
S
Aw dt L3!'\ wp S\ wa

1 d AwS\2/ 1
LAY G s
2w’ dt wn 2
‘Aw541A+1AA+—1AA
+<"“—> (24 6 3 54, 1A 2

wp 3

1A2 1 1 2)}]
+ 14 3¢4¢2 4¢3 .

[f the amplitude characteristic is symmetrical and
the phase characteristic skew-symmetrical, the even-
order terms and some coefficients of the odd-order terms
vanish.

()

®

V. SOLUTION FOR SMALL DEVIATION RATIOS

To obtain the formula for small deviation ratios it
i1s convenient to express the transfer characteristic in
Cartesian form: T'(u) = P(x) +jQ(u). P(u), and Q(u) are
the in-phase and quadrature components, respectively.
Equation (4) may then be written

Il

Yo

[expj(wcl + Aw ’ Sdt):'[l + R+ jI)
,,(A£> RIS P (iws )
wg ws 12'wp wB
S pon (.XwS >
Fhos® g o }
AwrS' (S’ AwS
{ ,m(, >
wp
S’ QV<_\wS> }
3!0052 wp . ‘.
AwS A ! y
o Q<1_> e P~<M>
wp wpg QZYwB (5
S AwS
n Qm(“’>_”,}
3!&)5 wp
2 ’
_ Aw S'{'i le(:xw:g>
wp

17 g
_-‘-S'_izpv<fms.>_..,}‘ 9)

wp

2w dwp

+

Since the deviation ratio is small, Aw/wp is small.
Also, from the relations hetween the polar and Carte-
sian forms of the transfer characteristic given in the
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Appendix, P(0)=1 when A4(0)=0, the condition as-
sumed in the previous section. It follows that both R
and 7 are small, compared with 1.

14+ R+jI
{(1 + R)2 + 1?}12 exp j{tan' I/(1 + R)}
= (1 4+ R) exp jI(1 — R).

Equation (4) then becomes

7 = (1 4+ R) eij(wct + Awf w,dt)
where

1 4
wd=S+—_’&7'[(1—R)- (10)

Aw

It is now assumed that P(u) and Q(u) can be ex-
pressed in the form of power series

2

P(u)=Po+uP1+%P2+---

Q(u)=Qo+uQn+%Qz+--w (11)

In the previous section it was shown that it is per-
missible and advantageous to write Ay=¢o=¢;=0.
From the relations given in the Appendix, the corre-
sponding conditions for the Cartesian form are Py=1
Qo=01=0.

On substituting the series of (11) into the expressions
for R and I given by (9), the frequency deviation w4 can
be expanded in a series. Since Aw/wp is small, only
terms with coefficients proportional to Aw/ws and
(Aw/wg)? need be considered in addition to terms incde-
pendent of Aw. The linear distortion terms are

S ” P2 S/ "Qa

SV P,
2lwg? 3lwg?

4wyt

4+

The even-order nonlinear terms are

Aw d [S{:s'_Q_z_ S’ S

Py — PyP) — ——
2 u%(’ it ETS

, Q= Q:Py)

+ (Ps—P4P1)+»--'(]

4\wg?

Aw d[S'{S/<1Q P@)
2w0p® dl P Tha ’

4

(Ps + Q:Q: — P3Pr)

3lwp?

e

Qo — P2 — QP + - - }] (12)

4lwp?
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and the odd-order nonlinear terms are

1 szd[S2{5<1Q QP)
2wt il 3 o0 e

!

S
—;:'(P4—P22—2P3P1+Q22)
‘wp

4

— ——(Qs — QsP2 — 2Q,P, — PyQ»)
3.’(4)32

44

+ =" (Pe = PPy — 2PsPy+ QQ0) + - }]

4lwg?
lxﬂd[”{S’<IQ o
2 wgt df ezl = =

17

31 2(PG—P4P2+Qaz—PsP1+Q4Qz—P32)
lwg

i

Q7 — QsP2 — PQs

4lwg®

= QP11 — PsQ: — QuP3) + - - - ‘(] (13)

The first term in each of the series in (13) has an
anomalous value, but all the following terms form a
regular sequence.

When the in-phase characteristic is symmetrical and
the quadrature characteristic skew-symmetrical, the
éven-order terms and half of the coefficients of the odd-
order terms vanish.

VI. DiscussioN oF RESULTS

For both large and small deviation ratios, the ampli-
tudes of the linear distortion terms are independent of
the frequency deviation. These terms which represent
phase and frequency distortion of the modulating wave
are not usually of interest.

For large deviation ratios, the distortion given by
(5) can be divided into two parts. The first and prin-
cipal part, (1/Aw)-(d/d!)¢p(AwS/ws), depends only on
the phase characteristic; the second part is determined
mainly by the amplitude characteristic and partly by
the phase characteristic. As the deviation ratio is large,
S’ /wp is small, so that the distortion produced by the
amplitudc characteristic is usually small compared with
that produced by the phase characteristic. Moreover,
if the modulating wave is the sum of a number of cosine
waves, it is clear from (5) that the principal part of the
distortion is the sum of a number of sine waves, whereas
the second part is the sum of a number of cosine waves.
Thus, the distortion products due to the amplitude char-
acteristic are in phase quadrature with the principal dis-
tortion products produced by the phase character-
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istic, and so have little effect on the total distortion
until their magnitude equals or exceeds that of the prin-
cipal part of the distortion.

If the deviation ratio D is increased while Aw/wp is
kept constant, the principal part of the distortion de-
creases in the ratio 1/D and the amplitude character-
istic distortion in the ratio 1/D% As the deviation ratio
is increased, therefore, the distortion is ultimately en-
tirely nonlinear in character, and is produced by the
nonlinear part of the phase characteristic.

For small deviation ratios the limits of the frequency
spectrum of a modulated carrier wave are determined
by the spectrum of the modulating wave rather than by
the maximum frequency deviation. Consequently, ws
cannot be reduced below a certain minimum value.
From the formulas of Section V it is then seen that as
Aw is reduced the distortion is ultimately entirely linear
in character, is independent of the maximum frequency
deviation, and is produced by the symmetrical part of
the in-phase characteristic and the skew-symmetrical
part of the quadrature characteristic.

VII. NATURE OF THE DISTORTION IN A FREQUENCY-
MobuLATiON NETWORK

If the input to a nonlinear vacuum-tube amplifier
with a resistive load is the sum for a number of cosine
waves, the output from the amplifier, including the dis-
tortion products, is also the sum of a number of cosine
waves. In the previous section it was noted that the
principal distortion products for large deviation ratios
are the sum of a number of sine waves. Thus, in a fre-
quency-modulation network the principal distortion
products are in phase quadrature with the correspond-
ing distortion products in a nonlinear amplifier.

A convenient method of specifying and measuring dis-
tortion in low-frequency apparatus is the intermodula-
tion method, in which two sine waves, one of low fre-
quency and amplitude nearly equal to the capacitance
of the apparatus, the other of high frequency and small
amplitude, are applied simultaneously to the apparatus.
Nonlinear distortion results in the amplitude of the
high-frequency component being modulated by the low-
frequency component, the amount of such modulation
being a measure of the distortion. In frequency-modula-
tion systems, however, the intermodulation distortion
is of an entirely different character.

Let S = C, cos wi!+ C: cos wyt where C.<<C and w;<Kwy,
and suppose that the deviation ratio is large so that
only the principal part of the phase-characteristic dis-
tortion is significant. Then, from (5), the frequency
deviation is

C1 cos wil + Cs cos wql

1 d Aw Aw
+ — — ¢<—— C, cos wyt + — C, cos wgt).

Aw di wp wp
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Since C. is small, the last term can be written approxi-
mately (because C,+C.=1) as

1 d Aw
_ ¢(—— cos w,t)
Aw di wp
C, d [ Aw 1
4+ — — <coswat ¢ | — cos wy! (
(57 di wp

The first term in this expression represents harmonics
of the low-frequency component. The secon term repre-
sents the intermodulation products, and, since w;>wy,
this term is

Cows | , [ Aw
—— —— SN wzl(f) — COS wyl ).

(43 wp

Adding to this the component of frequency w, in the
frequency deviation gives

w2 Aw
C, | cos wat — — sin wal ¢’ { — cos wil
wpB wp

. w2 Aw
= Cycos qwol + — d), — CO0S wil .
wp wp

Nonlinear distortion is manifest as a modulation of
the high-frequency component, not in amplitude, but
in frequency (or phase) by the low-frequency compo-
nent. The amount of the modulation depends not only
on the amplitude of the low-frequency component, but
is also directly proportional to the frequency of the
high-frequency component.

Since the intermodulation is of frequency instead of
amplitude, the intermodulation products are in phase-
quadrature with the corresponding components in the
vacuum-tube-amplifier case. Listening tests have shown,
as would be expected, that the ear is unable to distin-
guish this phase difference, provided the distortion is
not too great. Accordingly, a sound wave given by (14)
produces the same aural effect as a wave given by

w Aw
C, {1 + —3¢' (-— cos w,t)} COS wal

wp wp

(14)

in which the high-frequency component C. cos wa! is
modulated in amplitude.

. It is, therefore, permissible to specify the distortion
in a frequency-modulation network as intermodulation

distortion, the magnitude being the maximum devia-
tion of

w2 Aw
14+ —9¢ —coswd)

wp wpg

from its mean value, but it must be remembered that
the modulation is of frequency and cannot be measured
by the same methods as are used for amplitude inter-

modulation. A suitable method is described in the Ap-
pendix.



1947

VIII. METHODS OF CALCULATION AND EXAMPLES

If the transfer characteristic can be representéd by
simple functions and the modulating wave is also sim-
ple, it is sometimes possible to calculate the distortion
directly from expression (5). An example of such a cal-
culation is given below. In general, however, this is not
possible, and the transfer functions have to be expressed
in power series form. The distortion is then calculated
from (7), (8), (12), and (13).

If the power series for either the polar or Cartesian
form of the transfer characteristic are given, the series
for the other form may be obtained from the relations
between coefficients given in the Appendix.

Finally, quantities of the form S"have to be evalu-
ated. For the purpose of analysis, a modulating wave
which yields a fair amount of information without too
much labor is the sum of two cosine (or sine) waves of
different or equal amplitudes. A method of expanding
the expression (k; cos wy!+k: cos wyt)™ in a series of
terms of the type A, cos (pwi+ qwe)t is given in the
Appendix. '

The intermodulation distortion is found by calculat-
ing the maximum or minimum value and the mean

value of
w2 Aw
— ¢’ | — cos wit ).
wp wp

A high-frequency carrier wave, frequency-modulated
by a 5-kc. cosine ‘wave, is applied to a network consist-
ing of a single parallel-resonant circuit such that the
amplitude response is — 3 db at frequencies differing by
+25 kc. from the carrier frequency. Find the third-
harmonic distortion in the frequency deviation of the
output wave as the maximum deviation is varied from
10 to 100 kc.

The transfer characteristic of the network is T'(u)
=(14ju)! exp ju,and wp=25 kc. The factor exp ju is
added to satisfy the condition that the phase character-
istic should have no linear part. Then A (x)= —1%logh
(1+#* and ¢(u) =u—tan—'u.

Let the modulating wave be cos wnt. For large devia-
tion ratios, cquation (5) is used. Now A" (u)+ {A'(u) }?
—{¢/(u) }2= — (u*—1)2(u2+1)?, so that (5) becomes

1 d (Aw Aw
COS Wl + — — < ——CcosSw,l — tan~! | — €0S w.!
Aw dt \wg wgp

W, d J Aw? s
- — [sin wml —— COSt Wt — 1
2wp? di W\owp?

(sz tant 1) |
wnzCOS W ) f]

Example 1

(15)

Now
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may be expanded in a Fourier series from the formula*

2a cos x i
et (2202) 25 e 2
1

2n —

2n—1

" cos 2n — x

by writing

aply g
= {1 + ——} -2
Aw? Aw

In the third term the factor
Aw? —2
(—— cos? wnt + 1)
w32
may be expanded by the formulas

(1 — 5931 + 5% + 2b cos x)~2
=14+b4+2) (- b)"{n + 1 — b*n — 1)} cos nx
1

by writing b =a? It is then a matter of straightforward
trigonometry to find the terms of third-harmonic fre-
quencies in (15). These are

Wm .
— 532 sin 3wt
Aw
3 /wn\? 1 Aw?) 2
e | —— 1 4 — — 1+ )1 — b»)—3
2 wp 2 (082

; {b(z ~ b)(1 4 b)? -+ —;— 91: (1 — 26)(1 — b?)?
wB

3 Awt
- — — (1 =81 — b"’)z} cos 3wml.

16 wp’

(16)

The amplitude of the resultant is the square root of
the sum of the squares of the amplitudes of sine and
cosine terms.

For small deviation ratios the Cartesian form of the
transfer characteristic is used. If (14ju)~" exp ju is ex-
panded in a series of powers of %, then

o = i _14_2+%_4_ 265u°+ 148331‘8”‘
21 41 6! 8!
2u®  44u® 1854
Q(u)=-3'l'--s—!+—,;'!—u
Hence,
Pr=—1 P,=9 Py= —265 Py= 14833
Qi=2 Qv=—44 Q; = 1854

On substituting these values into (13), the terms of
third-harmonic frequency are found to be

¢ “Smithsonian Mathematical Formulae and Tables of Elliptic
Functions,” Smithsonian Institution, 1939; p. 140.

¢ J. Edwards, “The Integral Calculus,” Macmillan Co., London,
1922; vol. 2, p. 303.
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szw,,.[ 51 w,? 1077 wmd] .

- - - — — 4 —— — | sin 3w,
4(0133 2 w32 8 wpgp

1409 w,.*

40 wp?

3 A 2 m2 79 m2
Bsiion [1 it ]cos 3w.t.  (17)

4

2 wp 6 wp®

Finally, putting w, = 275000, wp = 2725,000, theampli-
tude of the third-harmonic component is 0.033(Aw?/w5*).

On Fig. 1 is shown the amplitude of the third har-
monic calculated from (16) and (17). The same figure
shows the experimental and theoretical results obtainel
by Jaffe. Jaffe's theoretical values correspond to the
sine term in (16), i.e., to the distortion due to the phase
characteristic.

'
LY
Q

/7
4
/
/
S

y
=T

)
(7]
(o}

—==SMALL O FORMULA
—-—JAFFE THEORY

THIRD HARMONIC DECIBEL S

40 /
/ x JAFFE EXPERIMENT
/ | L]
10 MAX. DEVIATION Kc/s. 100

Fig. 1—Third-harmonic distortion in a single resonant
circuit.

Example 2

The frequency-selective circuits of an amplifier con-
sist of three identical band-pass filters connected in
cascade via amplifier tubes. Each filter is made up of two
identical simple resonant circuits critically coupled. The
over-all amplitude response of the amplifier is —6 db
at frequencies differing by +100 kc. from the midband
frequency.

Estimate the intermodulation distortion at a fre-
quency of 12 kc. when Aw=75 kc.,

(a) when the carrier frequency is equal to the mid-

band frequency; and

(b) when the carrier frequency differs by 25 kc. from
the midband frequency.

A carrier wave modulated by two cosine waves of
equal amplitudes and of frequencies 3 kc. and 5 kc. is
applied to the amplifier. The maximum deviation is 75
kc.

(c) Find the amplitude of the distortion product of
frequency 11 kc. when the carrier frequency is
equal to the midband frequency.

(d) Find the amplitude of the distortion product of
frequency 8 kc. when the carrier frequency differs
by 25 kc. from the midband frequency.
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The transfer characteristic for a pair of identical
resonant circuits critically coupled is (1 —3a?u’+jou)™*
exp jau, where « is a constant depending on the band-
width. Taking wg as 100 kc., the transfer characteristic
for the complete amplifier is 7T(u)=(1-—0.7694*
+j1.24u)* expj3.72u, from which  ¢(u)=+43.72u
-3 tan"‘{ 1.24u/(1 —O.769u’)}. The Gregory series for
tan'x converges for |x| <1, corresponding to |u|
<0.59. By expressing ¢(u) as an inverse sine, a series
can be found which converges for |u| £1.14, but the
convergence is very slow. However, it is found that for
values of # up to 1, ¢(u) can be approximated by the
expression ¢(u) = —0.954*40.51245—0.01727.

When the carrier frequency is shifted from the mid-
band frequency of the amplifier by 25 kc., this is equiva-
lent to shifting the working point of the transfer charac-
teristic from 0 to 25/100=1%. Consequently, the new
phase characteristic is obtained by writing #+1 in place
of u in the above expression for ¢(x). Omitting the
linear and constant terms, this is

—0.6312—0.632340.631440.4915—0.030%5—0.0172".

The amplitule characteristic has a negligible effect on
the distortion, and is therefore ignored.

The intermodulation distortion is the maximum de-
viation of

w2 Aw
¢ <-— cos wlt) = 0.12¢(0.75 cos w\f),

wp wB

from its mean value. In case (a) the mean value is, from
(20), —0.061. The maximum value is obviously 0, and
the minimum value is easily shown to he —0.096; the
intermodulation distortion is, therefore, 6 per cent. In
case (b) the mean valueis —0.03, and the maximum and
minimum values are 0.02 and —0.076. The intermodu-
lation distortion is now 5 per cent.

Cases (c) and (d) are solved from (8) and (7), using
the expressions for ¢(u) given above, and evaluating the
amplitudes of the distortion products from (20), with
»=2,g=11incase (c), and p=g=1in case (d). The re-
sults are: 0.0038 and 0.0056. In case (c) the distortion
products are all of the odd-order type, i.e., of the form
@pq COS (pw; +qw,)t where p+-gis odd, but in case (d) the
even-order type is predominant.

[X. DISTORTION IN A RECEIVER WITH
NEGATIVE FEEDBACK

Negative feedback may be applied to a superhetero-
dyne receiver by arranging that the detector output
operates a modulator, which controls the frequency of
the receiver local oscillator, in such a way that the fre-
quency de\_'iation of the received wave is reduced before
the' wave 1s amplified at the intermediate frequency.
This arrangement was first described by Chaffee.®

°J. G. Chaffee, “The application of negative feedback to fre-

quency modulation t »
404-438; July, 1939. systems,” Rell Sys. Tech. Jour., vol. 18, pp-
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In what follows it is supposed that the detector out-
put is equal to the frequency deviation of the wave ap-
plied to it, and that the modulator is also free from dis-
tortion. In practice, it is the modulator distortion which
sets the limit to reduction in distortion obtainable by
feedback.

Let the frequency deviation of the received wave be
AwS(¢), and let the detector output be O(¢). The fre-
quency deviation of the local oscillator is 30(¢), where
B is a constant, and the frequency deviation of the wave
of intermediate frequency is AwS(¢) —BO(¢). The effect
of the i.f. amplifier is to delay the modulation by a time
T, and to add distortion, so that the frequency deviation
of the wave arriving at the detector;, and hence the de-
tector output, is AwS(¢—T)—pO¢—T)4+KD(t—T)
=0(t). D(t—T) is the relative distortion in the fre-
quency deviation, and K is equal to the maximum de-
viation at intermediate frequency.

By expanding O(t—T) as a series of derivatives of
0O(t), an equation is obtained expressing O(f) in terms of
S(t—T), D(¢t—T), and derivatives of O(¢). On differen-
tiating this cquation and eliminating O’(¢) between this
equation and the first one, a new equation is obtained
from which O’(¢) is absent. Proceeding in this way, all the
derivatives of O(¢) can be eliminated and the other terms
collected together to give

w) 1
o) = 1%}‘5 [se- T+ + D=/ o]

+ terms of higher order.

The higher-order terms are derivatives of S(¢) and
D(¢) and are always of negligible magnitude. The term
D(t—T/(14B)) represents the distortion suffered by a
wave whose frequency deviation is AwS(t—T/(148))
where Aw=A4w;/(1+B). Under different conditions
which will now he examined, the magnitude of

1
- T — T+
148 (¢ /( B))

is more or less changed when 3 is varied.

First, let the bandwidth remain constant as 3 is in-
creased from zero. Then, from (7), (8), (12), and (13), the
quadratic distortion (S?, SS’ etc.) is proportional to
Aw/(140), ie., to (148)2 the cubic distortion to
(14-8)~% and gencrally thenth order distortion is propor-
tional to (1+48)". Thus, if the application of feedback
reduces the deviation of thereceived wave by N decibels,
the quadratic distortion is reduced by 2N decibels and
the cubic distortion by 3N dccibels.

Next, suppose that, as the maximum deviation is re-
duced by feedback, the bandwidth of the i.f. amplifier
is reduced in the same ratio, the shape of the transfer
characteristic being kept constant. This is possible so
long as the reduced bandwidth is greater than twice the
highest modulating frequency. From (5) it is seen that
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the distortion of all orders due mainly to the phase char-
acteristic remains constant, and the distortion due
mainly to the amplitude characteristic increases in the
ratio 143.

The third case to be considered is that in which the
deviation ratio is initially large, and the feedback is suf-
ficiently great to reduce the deviation ratio to less than
1. As feedback is applied the bandwidth is reduced from
its initial value of 24w, to the limiting value 2w,. The
distortions before and after feedback are not directly
comparable on a numerical basis, since the nature of the
distortion changes. However, in some cases the distor-
tion for both large and small deviation ratios is due
mainly to one particular term. As an example of typical
distortion components, the term

1 d ¢3<ANS>3
Aw dt 3!\ wsp

in (8) and the corresponding term

1 Aw? d $%(1/30 P)
2 wg? dit e 02 !

in (13) may be taken. From the relations hetween the
polar and Cartesian forms of the transfer characteristic
given in the Appendix, these two terms are equal.
Initially (8 =0 wp=A2w,), the distortion is
¢s S

- T

2 Aw1
and finally (wp =w,), it is
é3 Awy? S2s’
2 w? (1+48)?

The distortion is therefore reduced in the ratio

{Z(;A%E}a: [D/(1 + B)]:

APPENDIX

A. Relations between the polar and Cartesian forms of the
lransfer characteristic

The steady-state transfer characteristic 7(#) may be
written T(u) =exp {A(u) +jp(u) } = P(u)+jQ(u), where
A(u) is the amplitude characteristic in nepers, ¢(u) the
phase characteristic in radians, and P(u) and Q(u) are
the in-phase and quadrature components of the charac-
teristic.

Then

P(u) = exp A(u) cos ¢(u)

Q) = exp A(w) sin ¢(u)

Aw) = 1/2 logh| PX(u) + Q*(1) |
¢(1u) = tan~ [Q(u)/P(1)].
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It is assumed that 4 (), ¢(x), P(u), and Q(x) may be
expressed as power series of the form

u2
A(u) = Ao+ uA1+§—!A2+-3—!A;+--- .

The coefficient 4 represents the gain of the network at
the reference frequency. Since this is arbitrary, it is
convenient to put 4,=0. The coefficient ¢, represents a
constant phase change of the carrier wave, which is of
no interest, and ¢, represents a time delay of the modu-
lation impressed on the carrier which may be allowed
for, if necessary, in the final result.

On the assumption that 4o=¢¢=¢, =0, the relations
between the coefficients in the power series for A4 (u),
¢(u), P(u), and Q(u), are as follows:

Po-’:l
P,=4,
P, =A,+4+ A,?

Py = A3+ 34.4, + A,
Py = A+ 444, + 3452 + 6424, + A* — 3¢,?

Py = Adeg+ 544, + 104342 4+ 104342 4+ 154,%4,
+ 104,43+ A,5 — 15A1¢22 — 10¢3¢2

Q=0=0

Q2 = @2

Qs = ¢3 + 3934,

Q4 = s+ 49341 + 6242 + 6poA 2

Qs = ¢s + S5¢4d1 + 109342 + 10¢34,% + 10¢2A43
+ 30424241 + 10¢24,3

A, = P,

Ay = Py — Py

As = Py — 3PP, + 2P

Ay = Py — 4PyP) — 3P, + 12PyP;% — 6P% + 30y

Ag = Pg — 5P,Py — 10PsP; + 20P3P;® + 30P,2P,
— GOPyPy3 + 24P5 — 30P 1022 + 10050:

¢2 = Q2

¢3 = Qs — 301"

¢ = Qi — 403Py — 6Q2P; + 12Q:P/?

s = Qs — 5Q¢Py — 10Q3P2 + 20QsP,?
— 10Q:P3 + 600, PPy — 60Q:P,%

B. Calculation of harmonics and intermodulation products

If the modulating wave is comprised of two cosine
waves of different amplitudes, then in calculating dis-
tortion products it is necessary to expand expressions of
the form (k; cos 6, +%; cos 8;)" in terms of unit powers of
multiple angles, » being a positive integer. This can be
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done most conveniently by expressing the cosine terms
in exponential form and applying the multinomial theo-
rem to expand the result.

Thus, if

y= [kl cos 6, + kq cos 02Jn
1 . .
= [k1 exp j61 + k1 exp — jO1 + ks exp jb,

+ ks exp — j6,]",
then, by the multinomial theorem,

- on!
=—X
y o

kl(a1+az)k2(a;+a4) expj{ (al—a2)01+(aa—a4)02} (18)

al!azfaglad

a1, ag, ag and a4 are positive integers or zero, and the
summation extends over all possible values of a;, a,, a3,
and a4 consistent with the relation

a1+ a2+ a3+ a4 = n. (19)

The coefficient of § exp j(pb,+¢f.), which is the same
as that of cos (p6,+¢f,), is obtained by putting oy —a,
=p, as—as=q. The coefhcient of cos (pb,—qgb,) is the
same as that of cos (p,+¢b,), since it can be formed sim-
ply by interchanging the values of a3 and «.

The minimum value of a, and a4 is zero. Let ap=r
then

n—p+gq a_n—[:—q .
—_— WESL A

ay=p+r
1= p > r z

az =

Itis clear that r attains a maximum value when a,=0
and this maximum is }(n—p —gq). Substituting for a,
az, as, and a4, and summing over all possible values of r,
the coefficient of cos (p, +gf,) given by (18) is

n! 12nzp-0 by (2420 b (n—p—21)

';’r!(ﬁf)!(n—p—q—' ()
) ()

. Only certain values can be taken by pand ¢ If »n
1s even, p+¢ must be even, and if » is odd, p+q must be
odd. Also, p+g cannot be greater than #. If either k, or
k; is zero, the expression has a value only when either
p+2r=00r n—p—2r=0. If n is even, ¥ has a mean

value which is } of the value found by putting p=¢g=0
in (20).

n—1

C. Measurement of intermodulation distortion

It was shown in Section VII that, if a carrier wave
modulated by a wave (, cosut+C, cos wyt (Co<KC
w1<Kwy) is passed through a network having a nonlinear
phase characteristic, the h.f. component, C, cos w.t, of
the modulating wave becomes modulated in frequency
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by a function of the l.f. component. The modulated high-
frequency component is, from (14),

w2, Aw
C,€08 <wat + —¢' | — cos wyt )¢ .
wgp wpg

The intermodulation distortion is defined as the maxi-
mum variation of the quantity

Wo Aw
14+ —¢'{ — cos w,t)

wp wp

(21)

from its mean value.

Suppose that the modulated carrier emerging from
the network is applied to an ideal detector which yields
an output proportional to the frequency deviation.
From this output the component given by (21) is se-
lected by means of a suitable filter and applied to a dif-
ferentiating circuit (e.g., a series RC circuit of small time
constant with the output taken across R) to produce a
wave proportional to
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1

Aww; | ,, [ Aw
sinwyt ¢’ { — cos wyt
sz wB
. w2 Aw
-sin {wot + —¢' { — cos wit ) .
wp wp

This wave is applied to an amplitude detector which
produces an output proportional to

Awwy | Aw
w241 — sinwif ¢’ | — cos wit ) .
2
wp wB

The alternating part of the output is filtered out and ap-
plied to an integrating circuit (a series RC circuit of
large time constant with the output taken across C) to
give an output proportional to

—C2w2{1 -

the peak value of which may be mesaured by a vacuum-
tube voltmeter. The voltmeter may be calibrated to
read directly the intermodulation distortion.

A Study of Tropospheric Reception At 42.8 Mec.
and Meteorological Conditions’
GREENLEAF W. PICKARDf{, FeELLow, I.R.E., AND HARLAN T. STETSON{, ASSOCIATE, LR.E.

Summary—From February, 1945, during its hours of operation,
station W2XMN at Alpine, N. J., has been recorded at Needham,
Mass., at a distance of 167 miles. W2XMN operates on a frequency
of 42.8 Mc., at a power of 50 kw., and its daily schedule is from 1600
to 2300, E.D.S.T. in summer and E.S.T. in winter. Analysis of the
Alpine recording has shown that no part of the ionosphere is involved
in the transmission, which is purely tropospheric.

The Alpine fields show a marked seasonal change, being much
higher in the summer than in the winter, and this has been found to
be principally due to the seasonal changes in surface refraction along
the transmission path. A controlling factor in the seasonal change of
refraction is water-vapor pressure, which is at a maximum in the
summer.

All types of frontal passage are found to lower transmission, and,
presumably because of wave-guide effects, the amount of field de-
pression caused by the passage of the front varies with the angle
made by the front with the path. When the front is parallel with the

path, the field is least depressed, but is lowest when the front makes
a considerable angle with the path.

High fields at Needham are usually followed by an increase in
surface temperature along the path, the temperature reaching a
maximum about 30 hours after the field maximum. Conversely, low
fields are generally followed by falling temperatures, which reach a
minimum some 30 hours after the field minimum.

The best transmission along the Alpine-Needham path occurs
when the wind velocity on the path is lowest, and the worst trans-
mission accompanies high winds, probably because of turbulence
which breaks up favorable stratification in the lower atmosphere.

Finally, the direction of air movement with respect to the path is
related to transmission, Needham fields being higher when the wind
is parallel with the path. The principal conditions favorable for trans-
mission over this path are therefore summer, high surface refraction,
rising temperatures, low wind velocities, winds parallel with the path,
and an absence of frontal passages.

INTRODUCTION

RANSMISSION from the f.m. station W2XMN,
operating on 42.8 Mc., at Alpine, N. J., is received
at Needham, Mass., distant 167 miles, on a
half-wave dipole with reflector 50 feet above ground. In
a conventional receiver a variable diode load is utilized
to operate a Micromax single-pen recorder. The circuit
* Decimal classification: R112.2. Original manuscript received
by the Institute, December 19, 1946; revised manuscript reccived,
February 10, 1947, Presented, 1947 National I.R.E. Convention,
March 6, 1946, New York, N. Y.

t Cosmic Terrestrial Research Laboratory, Massachusetts Insti-
tute of Technology, Needham, Mass.

is periodically calibrated with a Ferris Microvolter at
42.8 Mc. when W2XMN is off the air. Because of the
large fading amplitudes, the fields are transcribed from
the recorder charts as log microvolts at the receiver.
One microvolt at the receiver equals approximately 0.7
microvolt per meter at the antenna. The charts are
scaled for the median value of 20-minute intervals
from which are derived hourly means and the mean
nightly field for the seven hours during which Alpine is
on the air each day. In the day-by-day comparisons
given below with the tropospheric elements, a general
use has been made of the ratio of the daily log field to a



	Gladwin_1436
	Gladwin_1437
	Gladwin_1438
	Gladwin_1439
	Gladwin_1440
	Gladwin_1441
	Gladwin_1442
	Gladwin_1443
	Gladwin_1444
	Gladwin_1445

