DISCRIMINATOR

The correlation of electrical characteristics in resonant coupled circuits and staggered cas-

cade circuits is demonstrated. From this result discriminator action is explained and con-

ditions for best linearity established. Theoretical linearity curves are plotted
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FIG. 1—Relative resonance characteristic
showing absolute value of impedance as a
function of Q and the ratio of frequency
off resonance to the resonant frequency

ISCRIMINATOR  CIRCUITS are

widely used to convert fre-
quency-modulated signals to audio-
frequency veltages. For this pur-
pose it is desirable that the direct
output vary linearly with the input
frequency. This article discusses
that linearity.

Logically we might write down
the equations governing discrimi-
nator action without preliminary
work. However, the relationships
in a discriminator can be obtained
as an extension of the problem of
tuned coupled circuits. The re-
sponse curves for tuned coupled
circuits are, in turn, very closely
related: to those for simple tuned
circuits. For these reasons it seems
easiest to treat these three prob-
lems as a unit. In explaining dis-
criminator action we shall there-
fore begin with a brief review of
simple parallel resonance and of
coupled circuits.

Review of Resonant and Coupled
Circuits
The impedance of a resonant cir-
cuit of parallel R, L and C is given
by:
2=t s+ jeC )
It is customary to simplify this ex-
pression by normalizing the fre-
‘quency variation in terms of the
bandwidth of the tuned circuit be-
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tween half-power points. On this
basis the impedance becomes:

R

Z “Tig (2)
or

A 1

il . 3

R ‘ Vl+s &
where

v=22Q4f/fo

Af = frequency off resonance

Figure 1 is a plot of the well-known
normalized resonance curve.

To get a physical picture of what
takes place in coupled circuits we
can think of the response curve as
the product of two resonance curves
staggered in frequency a certain
number of bandwidths.

For example, two resonant cir-
cuits can be regarded as the coup-
ling impedances in a two-stage
amplifier as indicated in Fig. 2.
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FIG. 2—Staggered resonant circuits used
as coupling elements in cascade amplifier
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FIG. 3—Identically tuned coupled-resonant
circuits could be used as a coupling
element
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'FIG. 4—Symmetrically detuned resonant

circuits combine to give critical flatness at
a—1. The ordinates of the product curve
are multiplied by two to improve readability

The voltage amplification is given

by:

£ gn?R? - : ! :

£ H+jE+a)l+j@=—a)
(4)

or
gg —_ gmg Rz (5)
Bl I+ @+alll + = — o))

Here each circuit is resonated a
half-bandwidths from the mean
frequency.

In the case of the coupled cir-
cuits shown in Fig. 3, we try to
obtain an analogous expression for
the transfer impedance, E./I, It
will be worth working this out in
detail because the results are di-
rectly applicable to the discrimina-
tor. In Fig. 3 we have:

_ 4 (Z + Zy)
and

“nrzl 7

Combining Eq. (6) and (7) we
have:
E: Z12
lo ~ 2%+ Z» ®
The impedance Z. is that of a
physical capacitor. It is very con-
venient, however, to neglect the
variation of this capacitance over
the small percentage range of fre-
quencies considered in the reson-
ance curves. This enables us to sim-
plify Z. to
Zy = — jkR. ©)
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Substituting Eq. (2) and (9) in
Eq. (8), we obtain

B _ R/ + )P
Io ~ RE/(L+ jo)] — JhE

(10)

or

B 1
RE-@-grmarm OV

Comparison of Symmetrically Detuned
Cascaded Circuits with ldentically
Resonated Coupled Circuits

It would be desirable to reduce
Eq. (11) to a form similar to that
of Eq. (4). In order to do this it
is clearly necessary to get the co-
efficient of z in the second factor
of Eq. (11) changed from k to j.
This is accomplished by multiply-
ing numerator and denominator by
i/k:

£ _ jlk

LR (14 jx+ 2/k)}[1 + jz)
If we measure normalized frequency
deviations from 1/k instead of
from zero by changing the variable,
so that z + 1/K = y, Eq. (12) be-
comes

E _ jrk
LE [ 47+ 1/ + 5y —1/k)
. (13)
Except for a multiplying factor and
a shift of abscissas this is identical
to Eq. (4), the equation for stag-
gered circuits. In Eq. (13) 1/k is
to be identified with «, the half
bandwidths off resonance, of Eq.
(4).

The choice of direct capacitive
coupling rather than mutual induc-
tive coupling  was made to simplify
the computation. If inductive
coupling had been used the results
would have been the same except
that no shift in abscissas would
have occurred.

The relationship between stag-
gered and resonant. circuits pro-
vides the physical interpretation
of the resultant curves. The prod-
uct of two widely-spaced curves
gives a double resonant peak while
the product of two coincident peaks
yields a single sharp peak. Thus we
are led to investigate the possibil-
ity of choosing the spacing between
peaks in such a manner as to make

(12)
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the two peaks coalesce to give a
critically-flat curve. ’

One way of determining the con-
ditions of this consists of differen-
tiating Eq. (5) with respect to z
and determining the value of a that
would make the two peaks just
meet. A second method consists of
setting the second derivative of
the curve equal to zeroat x = 0 and
solving for a. As is well-known,
these conditions lead to the choice
of a = 1 for critical flatness. Curves
showing the two resonant curves
and their product for this condition
are shown in Fig. 4.

Discriminators

We found it convenient to: ob-
tain a physical picture of coupled
circuits by means of cascaded stag-
gered circuits., In just the same
way it is useful to consider a very
simple discriminator circuit before
considering the general case. Fig-
ure 5 shows an idealized discrim-
inator circuit of this sort.

Detectors are arranged to pro-
vide two opposing direct voltages
one of which is proportional to the
magnitude of the impedance of one
circuit while the other is propor-
tional to the impedance of the sec-
ond circuit. As before the resonant
frequency of each circuit is stag-
gered from a mean value by a half-
bandwidths. Thus we have

3 Linear |~
e detector |

+
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Vi+{x-a)? 1 detector|

FIG. 5—Simple staggered resonant-circuit
discriminator

FIG. 6—Basic coupled resonant-circuit dis-
criminator
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It has been pointed out by
Travis' that the more conventional
type of discriminator has a char-
acteristic expressible in this form.
Let us consider the circuit shown
in Fig. 6. From our previous analy-
sis, we see that while the frequency
discrimination of the circuit of Fig.
5 corresponds to that of the circuit
in Fig. 2, the discriminator of Fig.
6 behaves like the coupled circuits
of Fig. 3.

The voltages E, and E, in Fig. 6
are fed to separate linear rectifiers
whose outputs are opposed. It is as-
sumed that the coils in Fig. 6 are

(14)
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FIG. 7—Practical discriminator circuit which has the same action as the basic
coupled resonant circuit of Fig. 6
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inductively coupled. If negligible
load current is drawn from the
points ¢ and b the voltage E, is
made up of half the difference be-
tween the primary and secondary
voltages. Similarly the voltage E,
is made up of half the sum of these
two voltages. Whether the primary
and secondary circuits are induc-
tively coupled or capacitively cou-
pled makes no essential difference.
Hence except for a shift in the vari-
able and a constant factor, the pri-
mary and secondary circuits of Fig.
6 are related in the same way that
the corresponding circuits in Fig. 3
are related. Thus we are led to
consider the magnitudes |E, + E,|
and |E, — E.| in Fig. 3. Combining
Eq. (6) and (8) we write:

E, 4 E, =Zl (Zy 4 Z2) + 22

2 TAES et L)
and
EI_E!=ZA\,ZI+Z’)‘\— 7/|"“_ Zx Zz
I, 22, + 2, —~2Z1+Zg
(16)

Substituting the equivalent expres-
sions for the impedances, we have

E+E 11

LE Wt a7
and
1 .
Ei—'Ez_l-f—j.’c(_]m —M'
LR - 2 — ik =2 —jrlcvw—lcx
T4z "
(18)

Forming the difference between
the magnitudes of Eq. (17) and
(18) we write

Ei+ E|— | E — E |
I | R
1 1
VI4 22 V14 (@ + 2/k)
Making the substitution v = z +
1/k as before and writing h(y)
for, the value of the function we ob-
tain

(19)

1 1
e e e
(20)
where ¢ = 1/k.
This has the same form as Eq.
(14).
The  practical discriminator

shown in Fig. 7 can be made the
same as that shown in Fig. 6 pro-
vided that proper turns ratios are
used between the primary and sec-
ondary windings and provided the
two windings have the same Q. The
two rectifier outputs are propor-
tional to |F,| and |E,|.
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FIG. 8—Discriminator characteristics which
result from a coupling equivalent to a
frequency spacing between circuit reson-

ances which corresponds to a = V3/2
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FIG. 9—Discriminator curves for various
values of a
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FIG. 10—Deviations of discriminator curves
from tangents at their cross-over point

The symmetrical conditions as-
sumed in Fig. 2 in deriving coupled-
circuit relationships are by no
means necessary but are mathemat-
ically convenient. Similarly it is
likely that symmetrical conditions
are not necessary in the case of dis-
criminators. Nevertheless the as-
sumption of such conditions is very
helpful in carrying out the arith-
metic in each case. The writer has
not tried to get a solution of unsym-
metrical cases.

Condition for Best Linearity

Let us investigate the shapes of

the curves given by Eq. (20).
Clearly if we let the two generating
resonance curves be spaced by too
great a frequency the resultant
curve will be badly nonlinear. Sim-
ilarly the curve for an opposite ex-
treme will have a reverse curvature
and will ‘be just as undesirable, If
we investigate the linearity at the
center by considering the deriva-
tives at the point ¥ = 0 we find,

2a
POy
h 1) =0
. 6a(2a* — 3)
B 1L(0) = T
h V(0 =0
; 30a (8a* — 40a* + 15)
h 7 (0) =— (1+az)“ﬂ7z”"
B VI(0) =0
A VIT(0) =
6300 (226a° — 78Sa* + Y0 — 35)
(1 + aE)lﬂ 72

It will be noticed that for ¢ =
v3/2 the second, third, and fourth
derivatives are all zero, making for
exceptionally good linearity.

Figure 8 shows the discrimi-
nator characteristic for this critical
case where the third derivative van-
ishes. Figure 9 shows a family of
curves for various values of a be-
tween 1 and 2. For convenience the
lower halves of these curves have
been omitted.

It would have been useful to per-
mit the frequency deviation ¥ to
vary sinusoidally and to expand
the resultant curve for h(y) as a
Fourier series. This would permit
the computation of distortion fac-
tors for various values of a and
frequency swing. Unfortunately
lack of time has prevented the com-
pletion of this numerical work.
However, some estimates of the dis-
tortion can be obtained from a
study of the curves in Fig. 10.
These curves show the difference
between the discriminator curves
of Fig. 9 and tangents drawn to
them at the origin. It will be no-
ticed that the curve for @ = <372
differs from its tangent by less
than 0.2 percent for values of ¥ less
than 0.5. However, the curve for
a = 1.5 lies close to its tangent over
a considerably larger interval.
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