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Effect of Magnetic Deflection on Electron Beam Convergence

third order perturbation theory.

out dynamic convergence.

The image curvatures of deflection yokes are calculated and minimized using
It is found that the mean image curvature is too
large to dispense with dynamic convergence when a point focus is needed. Proper

field shaping, however, can produce a good line focus over the whole screen with-

Introduction

The quality of deflection yokes has become increas-
ingly important. Larger screens call for larger deflection
angles and ~olor kinescopes have three beam guns, which
implies a much larger convergence angle than a single
beam. The misconvergence of yokes is proportional to
both the deflection angle and the convergence angle. In
consequence, it has been necessary to introduce *‘dynamic
convergence’’ as a means of keeping the three beams con-
verged over the whole surface of the screen. Since the
dynamic convergence requirement increases the cost of
guns as well as circuitry and also introduces an effect
known as ‘‘degrouping’’, it is important to minimize or
eliminate the need of dynamic convergence by minimizing
or eliminating those aberrations of the deflection yoke
which are responsible for misconvergence.

This bulletin investigates the aberrations of a de-
flection coil, using its symmetry properties, by a perturba-
tion treatment developed by W. Glaser and G. Wendt!:2.
It will be shown that significant improvement over present
yokes is possible for line-screen kinescopes and that the
length of the yoke field is the most important parameter.

Description of the Magnetic Field

Magnetic deflection fields as they are used in tele-
vision tubes have as a common property the symmetry group
to which they belong. If we take as the z-axis the axis of
the tube and the xandy axes as the horizontal and vertical
axes, then the symmetry property of a vertical deflection
yoke coil (Fig. 1) is given by:

1. w. Glaser, Z. Physik, 111, 357 (1938).

2. G. Wendt, Telefunkenrohre, No. 15, 100 (1938).

Hx (X,Y,z) = Hx (=x,y,2) = Hx (x,-y,2)
Hy (x,y,2) = _Hy (-x,y,z) = '_Hy (x,-y,2) (D

HZ (x,y,2) = —HZ (—x,y,2) = Hz (x,—y,2)
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Fig. 1. Symmetry of a vertical deflection coil.

In the region of deflection, the field has to obey
Maxwell’s equations for a region free of charge, current
or electric field:

curl H

"
o

- (2)
div H=0

Equations (1) and (2) limit the possibilities of choices for
deflection fields considerably. In a power series expan-
sion of the field one obtains:

H =H, (2) - [H2(2)+ H'l'(z)/Z] x? + HZ(Z)Y2

+ fourth order terms
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Fig. 2. Lines of constant field strength.
Hy = 2H2(z)xy + fourth order terms 3) quate for questions of convergence, since certain boundary

H, = H}(z)x + H)(2)xy? ——é-[Hi’(z) + 2H2'(z)] x>

+ fourth order terms

where H'(z) = dH(z)/dz.

The meaning of (3) is that for sufficiently small x
and y, the curves for H, = constant are ellipses or hyper-
bolae in a plane z = constant. The curves H_ = constant
are hyperbolae. The curves H, = constant are slightly
more complicated, but for very small x and y they are
straight lines parallel to the y-axis.

Fig. 2 gives a plot of H_, H_, and H, as it was
measured in a typical deflection yo¥<e at some arbitrary
z = constant. Of course, equations (3) need no experi-
mental verification, being a simple consequence of the
symmetry properties of the yoke coils and Maxwell’s equa-
tion. The figures do indicate, however, for what ranges
of x and y a third order expansion of the field will give

good approximation.

Equations (3) also show that the whole field in the
region where third order theory is good, is given by two
arbitrary functions Hl(z) and Hz(z). Therefore, in order
to know the field, it is only necessary to obtain these
functions. This is easily done by measuring the total
field along two lines parallel to the z-axis: (a) The z-axis
itself (x =0, y = 0,) (b) Some line of constant y and x = 0
(x =0,y =y.). (a)Will give H,(z) directly as can be seen
by an inspection of (3). (b) Will give H (2) + Hz(z)yg .

This means that simply measuring the total field at
say ten points on line (a) and line (b) makes it possible to
pass tenth-order ploynomials through H,(2) and H,(2),
which in turn specify the whole field in the regions of
interest,

The third order expansion should be good for deflec-
tion angles of up to 25 degrees. This is perfectly ade-

conditions about the surfaces of best convergence will
then make it possible to extrapolate to any desired de-
flection angle, as will be demonstrated later.

-

Now introduce a vector-potential A, such that
H =curl A
One particular choice of A is the following:

Ax = (0 + fourth order terms
Ay = (1/2)H1' (z)x2 + fourth order terms (4)

A, =H @)y +(1/3)H,(2)y> - H, (z)x%y

+ fifth order terms.

The Perturbation Method

Lagrangian and Equations of Motion

The integration of the path by the perturbation
method has been derived in detail for magnetic deflection
fields(1) (2), Only as much of the argument will be re-
peated here as is necessary for an understanding of the
conclusions.

The lagrangian for an electron trajectory can be

written
Pl
W - j
PO

in close analogy to Fermat’s principle in light optics,
where:

Fdz

F = mds/dz.
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In electron optics, the index of refraction becomes:
7= (512 ~ (e/2m)1/2
[Ax (dx/ds) + Ay (dy/ds) + A, (dz/ds)]

and F= (Y2 (1 +x 24y V2 _ (e/2m)1/2
1 1
(Agx + Ayy % Ad
The function { is simply the electric potential taken

with respect to a particle at rest and in the case of a
purely magnetic field it is:

{ =mv2/2e , with v2 = constant.
Therefore:

G=F/€1/2 =(1 i |2+y '2)1/2—/»L(AXXI+Ayy' +Az) (6)

with: u =e/mv

and g = dx/dz
y! = dy/dz

Fermat’s principle now states that the trajectory makes
the lagrangian an extremum:

Z]

) f Gdz =0

Zo

SG(zl)=3G(zo)=0 (7)

This leads to the Euler-Lagrange equations:

9G/9x — (d/dz) (3G/2x') = 0

8)
3G/ dy — (d/dz) (3G/3y") = 0 (

substituting for G from (6) and then for the components of
the vector potential from (4) gives the differential equa-
tions for the trajectories up to the third order:

(d/dz) (x' = x'3/2 = x'y '2/2)
=—pu [Hll (2)xy' — 2H, (2)xy ]

(d/dz) (y' =y '3/2 - y'x '2/2) )
= - [H, () - Hy(2)x? - H, (2)x?/2

+H, (2)y? - H(z)xx ']

The method of the perturbation calculation consists
in solving the equations (9) for the terms which are first
order in x,y,x', and y'. Then substitute the solutions for
these quantities into the terms of higher order and solve

the equations with the third order terms included. This
solves the equations of motion up to terms of third order.

The First Order Solution

The equations (9) become after omission of the sec-
ond and third order terms:

x" =0
(10)
yll e /«LHI(Z)

The asymmetry between x and y derives, of course,
from the fact that the deflection field is for vertical de-
flection. Assuming the field to start at z = 0 and end at
z = [, a restriction which will be discussed in detail later:

1
X=Xo+ ZXO

5w an
Yy =Y, +zy; - M f dw f H, (v)dv
o o

Now, consider only rays which before deflection
were going toward a point on the z-axis, say z = L, where
L > [, (Fig. 3), and which at z = 0 were located at a
radius r from the z-axis. In that case, introducing cylin-
drical coordinates,

X =-rcos {

xol =(r/L) cos (

; (12)
Yo = (t/L) sin (.

Y, =—t sin {

Furthermore, define the convergence angle a as
(r/L) =tan axa.

Now assume, without loss of generality, that all terms of
order a2 can be neglected. These terms do, in fact, intro-
duce a deflection error known as “*Koma’’; however, the
‘*Koma’’ does not affect the shape of the surfaces of best
convergence. It does affect the quality of convergence,

since it always broadens the spot.

The first order solution for a cone of rays originating
on a circle of radius r at z = 0 and heading, before deflec-
tion, toward a point x =0, y =0, z =L, is:

x =(z-L) acos (
(13)
y =(z-L)a cos { + D (z)

where D (z) will be called the deflection:

z w
D(z) =— u S dw S Hl(v)dv
e} )
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It is seen from (13) that for z = L, where the screen is
located

x=0
(14)

y =D(L)
and D(z) is strictly proportional to H,(2). This situation
is also referred to as *‘perfect gaussian deflection’’. The
whole cone, regardless of convergence angle or deflection
angle, comes to a point of convergence aty = D(L), and
D (L) depends linearly on H,(2). Any deviation from (14)
will be called a **deflection error’’.

v
|
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w

:

/

PRINCIPAL PLANE
OF DEFLECTION

-~
[/
K

SCREEN

Fig. 3.

Ideal deflection of a conical bundle.

The Third Order Calculation
The solution for the first order calculation is
x =(z-L)acos (
y =(z-L)a sin { + D(z)
1
x =acos { (15)
1 . 1
y =asin { +D (z)

z
where: D'(Z)=—/,L 5 Hl(w)dw

[o]

Substituting these values into equation (9) for the higher
powers of x, y, x , and y , the equations can be easily
integrated. Then write down the solutions for our original
conical bundle of rays, and obtain for z = L, (neglecting
terms of the order of OLZ):

x(L) = Ipa cos (
(16)
y (L) =lpa sin { +D(L) +15.

Here, I, Ip, and I, are integrals of the field quan-
tities, which will be given later. They will be given the

following names:
Ip = Perpendicular astigmatism,
I} = Tangential astigmatism,
I, = Distortion.

Figs. 4, 5, and 6, will give these *‘errors’’ meaning.
Fig. 4 is a picture in the x = 0 plane of the central ray
(r =0) and two rays whose original coordinates are given
by: cos { =0, sin { =+ 1. From (16), in that case

x(L) =0

y(L) = iITa+ID + D (L).

Fig. 4. Vertical deflection of tangential rays (sin ¢ equals
+ 1.

N
\
\
\
F 4

5. Vertical deflection of perpendicular rays (cos ¢
equals + 1).

Fig.

For the central ray a =0 and it will simply be dis-
placed from the *‘perfect’’ position D(L) by an amount
I,. The rays coming from sin { =t 1, will be displaced
by an amount t Ipa +I,. If I is positive (as it usually

is), then the three rays will cross at a position z = Z.
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The curve which is generated by these crossings will be
called the **Tangential Image Curvature’’ and its radius of
curvature (constant in third order theory) is Rp.

Similarly, in Figs. Sa, and 5b, a projection of the
rays characterized by initial position sin & =0, cos & =
+ 1 are given in a plane y = constant and x = constant
respectively. Here, the only distortion arises from the
term I, and the two rays will cross at a position z = z,.
The curve which is generated by these crossings will be
called the **Perpendicular Image Curvature’’ and its

radius of curvature (constant in third order theory) is Ry,

Finally, there is a curve along which the whole
bundle of rays form the smallest circle. It is along this
curve that best overall convergence is obtained. This
curve is called ‘*Mean Image Curvature’’ and its radius
of curvature R is given by:

am = a2 [a/mg) » amp). a”)

Fig. 6 gives a diagram of the total situation, show-
ing the three image curvatures. In order to obtain good
convergence, it is, therefore, desirable to maximize these
radii of curvature, in order to make them correspond to the
curvature of a screen that is not too severely curved to-
wards the gun system. That the mean radius of conver-
gence has definite upper limits will make up the main part
of the rest of this bulletin.

Ry \\\|

o
v .,

|

|

1 |

Fig. 6. The composition of astigmatism.,

Let it also be mentioned, with respect to (16), that
it thus appears that the ring of rays starting from z = 0,
x2 + y2 =r2, which has been considered, will on a flat
screen at z = L, appear as an ellipse, whose center is at
x=0, y=D(L) + Iy and whose axes are IPa in the hori-
zontal and Ira in the vertical directions.

The Surfaces of Convergence

In order to obtain the tangential, perpendicular, and
mean image curvatures, i.e., RT’ RP’ and R, use is made
of the fact that in third order theory these radii are con-
stant., That means that without loss of generality the
radii for infinitesimally small deviations can be calculated
and they will hold for the whole region in which third order
theory holds (up to deflection angles of about 25 degrees).
Later, it will be shown how these can be extrapolated to
higher angles.

I7a]
| & _
7 | \
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Ry | \
7 m A DIL)
| \
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/ |
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Fig. 7. Calculation of R.

For very small deviations, D can be considered as an
infinitesimal quantity and quantities of the order of D2 can
be neglected. The calculation is made with reference to

Fig.7. Two relations hold exactly in that figure:
2
R2 =m? + [RT - (L-zT)] (18)
and
ITa/r = (L'ZT)/ZT . (19)

Consistent with the small angle of deviation, put
m? =D?

and neglect (L-zT)2 compared to (L-z.p). When these ap-
proximations are used consistently, (18) gives:

Ry =D?/2 (L-zp);
and from (19), putting azT/r = ZT/L |

=D2
Ry =D /ZIT. (20)

Similarly

=p2 .
Rp =D2/2l; (1)
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and from (17):

/R = (I} + Ip)/D2. (22)

Actually the quantities IT/D2 and IP/D2 will turn out to
be independent of DZ and it appears thus useful to define:

Jp = 1y/D?
(23)
Jp =1p/D2
Now:
1/Rp=2]p
1/Rp = 2]p (29)
I/R =] +]pe

Now give attention to the form of J. and J,, and see

their dependence on the field distribution H,(2) and H,(2).

Assume that a conical bundle of rays enters the deflection

field at z = 0. The deflection field is different from zero

up to z = [. The original bundle was convergent on the

z-axis at z =L. The aberrations J.. and J, are then given
by:

Jp =G/, +28,
(25)

Jp ==(1/2)S] ~ 25, + S, ,

2 L 2
] ]
o

2 ]
. /J.[I/D(L):| SHZ(Z)D(Z)(z-L)Zdz (26)
(o]

where

wn
]

2}
n

2 1
S, = u? [1/D(L{| S H2 (2)(z-L)%dz.
[¢]

It will be remembered from (14) and (15) that:

z w

D(z)=—p,S dw S Hl(v)dv
o o

and
z

D'(Z) = —u S Hl(w)dw.
o

It follows that:

l z
D(L) =_#S dz “‘ H (v)dv+(L-DD'())  (27)
o [o]

Substituting (25), (26) and (27) into the expression for

(24),
L

5 !
1/R = s)[D'(z)] dz + p? g H3(z)(z-L)*dz.  (28)

D2 (L)

The first important result is that (28) does not de-
pend on H,(2) at all. This means that even though R... and
Rp depend very sensitively on H,(z), the radius of best
overall convergence depends only on the field along the
axis, Hj(z). Secondly, it is obvious from (28) that 1/R
and, therefore, R is always positive. This means that the
surface of best convergence must always bend towards the
source of the electrons.

It now remains to minimize the expression for 1/R,
(28), which will maximize R and, therefore, yield the best
possible field distribution.

K(Z)

H(Z)

ARBITRARY UNITS
o

Fig. 8. Relationship between K(Z) and H'I(Z)'

In order to make (28) more amenable to mathematical
treatment, introduce the following function:

l

Z
K(z) = [s Hl(w)dw\ / ‘ S Hl(w)dw]. (29)
)

o]
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In that case the reciprocal radius of image curvature

becomes:
l l l 2
1/R ﬁ K2dz +S K2(z-L)2dz + (L-IEI/[S Kdz +(L-l):| (30)
o o

The boundary conditions on K(z) are:

K@) =0

K{l)=1 (31)

K(z) =0 forz<0 and z>1.

The derivative of K(z) with respect to z, f((z), is simply
l

H,(2) f H,(z)dz. The K(2) simply represents a normalized
)

potential. Fig.8 shows the relationship between K(z) and
Hl (z).

The next step is to minimize (30), which means find-
ing that distribution of K(z) which will give a minimum
1/R. The results of this calculation will be given in the
next section,

Results

The Uniform Field
The solution of the equation
5(1/R) =0

where (1/R) is givenby (30), has proved to be too difficult
in closed form. It was, therefore, desirable to use poly-
nomials of a certain degree n, such as Legendre polyno-
The first

order case corresponds to a uniform field. This case is

mials, for K(z), and minimize for each case.

of particular interest, because it has been discussed by
several authors in the past, mostly incorrectly, due to a
The first correct treat-
ment and experimental verification of the uniform field

disregard of Maxwell’s equation.

case was given by Marschall and Schroder 3),

For the uniform field, K(z) takes the following form:

K(z) =0 z£0
K(z) =2/l 04£z<Ll (32)
K(z) =1 l £z

(See Fig. 8).

3. Marschall, H. and Schroder, E.Z. Tech. Phys. 23, 297,
(1942). (The definition of L in that paper would cor-
respond here to L — (1/2)1).

Substituting (32) in (30) we obtain:
(R/L) = (I /L) [1-<Z/L> + (1/4) /L)z] /

[1 - (1/3) (l/L)z]

To render this result dimensionless, we define new quan-

(33)

tities:
R/L
L/L.

ye,
A

Obviously A can vary from 0 to 1.

In terms of the parameters o and A, (33) becomes

o = A[l-x + (1/4)A"]/[1—<1/3)>?:|. (34)

FIELD GIVEN BY Ki (Y¥)

" Kaly)
" Ksly)

4 .5 6 7 8 9 1.0
A= L/L

Fig. 9. Maximum radius of curvature for a polynomial expan-
sion of the field.

The solid line in Fig. 9 gives a plot of equation
(34). The main feature of this result is that for short
fields ({ <<L and, therefore, A<< 1) pis equal to A, and
consequently:

R~ !. (35)

This means that for short yokes the image curvature is not
related to the yoke to screen distance (L), as is widely
believed, but is simply the length of the yoke field ().
As the length of the yoke field increases, i.e., as A ap-
proaches 1, the image curvature approaches

R ~ (3/8)L. (36)

This result is in perfect agreement with Marschall and
Schroder (3) and has been verified experimentally by them.

Higher Order Solution

The analysis of the uniform field still leaves the
question open as to whether more general field distribu-
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tions can yield a larger radius of curvature R, than is
given by (33). For this purpose, higher order polynomials
were used for K(z) and 1/R was minimized with respect
to the parameters of the expansion. Of course, K(z) must
obey its boundary conditions at z =0 and z = [.

The expansion of K(z)was done in terms of Legendre
Polynomials. In order to change the interval 0 to [ of z,
into an interval -1 to +1, change variables from z toy,
where y is given by

y =Qz/l)-1. (37)

Now more general expressions for K(z) can be given suc-
cessively:

1st Order

K,(y) =(1/2)P (y) +(1/2)P (y) (Uniform field).
2nd Order
K(y) = a P (y) + (1/2)P (y) +(1/2 =a )P, (y).
3rd Order

Ky(y) =a,P () +a, P (y) +(1/2 =2, )P,(y) +(1/2~a,)

P3 (¥)-

The minimum radii of curvature for each case are given in

Fig.9, in terms of p = R/L and A = /L.

The main result of this investigation is that the im-
provement that can be achieved by using a more general
field distribution than the uniform field is completely in-
significant. For example, always using the best choice of
a, and a, in Ks(y), we obtain:

0 = A(1=A+.1302 +.06\3 +.01\%)/
(38)
(1=.5222=.01\3 + .04)\%).

Quantitative comparison of (38) with (34), as shown in
Fig. 9, demonstrates how insignificant the improvement
of the more general third order field is over the uniform
field.

Equivalent Uniform Field

For a practical application of the results in the
preceding section, one point needs further clarification.
Actual fields are not precisely confined to a region from
Otol. In order to give the formulas meaning, therefore,
we must define a length, which will be associated to an
actual field distribution which ranges from plus to minus
infinity. This is possible, particularly when one recog-
nizes from (34) or (38) that R is sensitive to the length

of the field only for short fields. Therefore, the formula
for the equivalent length should be very good for short
fields, [ <L/3, and qualitatively correct for larger fields.

Ap analysis of (30) in connection with (29) and (34)
gives for the effective [:

[00) 2 [00)
. =|:/ Hl(w)dazl/l: Hf(w)dw]
— = 0

e
where w represents an arbitrary coordinate system.
order to place the origin of the z coordinate system, the

(39)

In

principal plane of deflection must be known. This is
given by:
@, @,
Yp =|:/ le(w)dvEVIi/ Hl(w)dw:l : (40)
' 0
Now define the z-coordinate system by:
z = w—wp + le/2. (41)

The image curvature can now be predicted by measuring
Hl(w), determining [_ from (39), wp, from (40) and the
z-coordinate system from (41). This gives L. To get the
image curvature use (34), substituting le/L for A .

Therefore, in order to predict the image curvature,
it is necessary to know only H,(w), the field distribution
along the axis.

The Hq(z) Contributions

Even though the surface of least confusion, that is
the mean image curvature, is independent of H,(2) in (3),
nearly all other properties of the yoke are extremely sen-
sitive to that function.
just H,(z) carefully to obtain desired results.

It is, therefore, important to ad-

H,(z) can be used to give anastigmatic yokes, or
purposely astigmatic yokes to fulfill special purposes
such as line focus, etc. These possibilities will now be
Since for every special purpose H,(2)
will depend very sensitively on H,(2), it shall be assumed
in what follows that H,(z) is a uniform field of length [,
where [ << L/3. Similar calculations, of course, can be

made for any particular H,(2) distribution.

taken up in turn,

Anastigmatic Deflection. An examination of Fig. 6 will
show that if it is desired for the beam, converged on the
surface of least confusion, to be a point, then Ry =Rp =
R. In equations (25) this means that J.. = Jp. Substitut-
ing the assumed constant H, gives, neglecting terms of

the order (I/L)2:

H, ~ Hl—(3/212). (42)
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Hx

x — INCHES

g2 .3 4 5 6

Y - INCHES

x — INCHES

y = INCHES

Fig. 10. Example of a non-astigmatic field distribution. ({ equals 5).

X = INCHES

6

4
y — INCHES

.5 7

x = INCHES

y = INCHES

Fig. 11. Vertical deflection field with a horizontal line convergence length, 4, of 5 inches and a
field-screen distance, L, of 20 inches.

Recalling (3) and the fact that for the assumed uniform
Hl (z) field the derivatives are zero, gives for the deflec-
tion field:

H

X

= H, [1 + (3/2) x*/1%)-(3/2) <y2/12>]

H, = -3H, (xy/l?) (43)

Fig. 10 shows the field distribution for an anastigmatic
coil with a length [ of about 5 inches.

Horizontal Line Convergence. Inthe caseofa line screen,
it may be only necessary to converge to a horizontal or
vertical line, rather than a round spot. Fig.(6 shows that
in that case R = or J. =0. Applying this condition to

equations (25) and assuming a uniform H1 as before:

H, ~ H; (9/2IL). (44)
Substituting into (3), gives for the field distribution:

H, = H, [1—(9/2) (x2/IL) +(9/2) (yz/lL)]

Hy = 9H, (xy/IL) (45)

H,=0.

Such a magnetic field would produce a spot converged on a
horizontal line. Fig. 11 gives such a field distribution for
a yoke screen distance L =20 and a yoke length [ = 5.
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x = INCHES

3

4 5

y — INCHES

6

Fig. 12. Vertical deflection field with a vertical

Vertical Line Convergence. If it is desired to bring about
convergence on a vertical line, then Fig. 6 shows that
Rp =, or J, =0. (Since all the calculations are for ver-
tical deflection coils, it is obvious that if it is desired to
have both vertical and horizontal deflection coils produce
horizontal line convergence it is only necessary to rotate
the field here calculated through ninety degrees and use
it as a horizontal deflection coil).

The condition J, = 0, when applied to (25) with
uniform short Hl(z), gives for H'2

H, = - Hy 3/1%). (46)
Substituting into (3), gives for the field distribution:

Hy = H [1 + 3(x%/1%) - 3(y2/12):|

Hy = ~GH, (xy/I%) (47)

H_=0.

Fig.12 shows such a field distribution for a yoke length

l=5.

Extrapolation to Higher Angles
The radius of image curvature R implies that the
surface of least confusion in the y-z plane is given by

y2 +2wR + w2 =0, (48)

where w is given by (z-L). This equation must hold for
small angles. On the other hand, for larger angles, the

fact that the surface has to pass through y =0, w=—L can

INCHES

X —

4 5 6, .

y— INCHES

line convergence length, ’ﬁ, of 5 inches.

be used. This can be achieved by modifying the w? term.
This gives for the complete surface:

y% +2Rw + (2R/L)w? =0. (49)
Or in the z-coordinate system:
y2 — 2Rz + 2R/L)z%2 = 0. (50)

Equation (50) is easily recognized as an ellipse with the
center at y = 0, z = L/2, with a semi-major axis in the
z-direction of magnitude L/2, and a semi-minor axis in
the y-direction of magnitude (RL/2)1/2. Fig. 13 gives
such surfaces of best convergence for various values of

/L = A,

Spot Size

From (16) and (33), the shape of the spot on a flat
screen can be evaluated. The spot must be an ellipse
with semi-axes given by a and b such that:

a+ba L(1+L/Da tano, (51)

where o is the aperture angle (r/L) (See Fig.4) and o is
the deflection angle.

The significance of the H, (z) function is that a and
b can be changed at will, as long as the sum a+b remains
constant. This result is in essential agreement with
E. Gundert.(4)

4. E. Gundert, Dimensionierung von Kathodenstrahlrohren,

Telefunkenrohre, Heft IV, 1953.
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Fig. 13. Surfaces of best convergence for various field lengths (p equals /ﬁ/L)

Conclusions

The following conclusions can be drawn from this

investigation:

(a). The main features of a deflection field can be
obtained by relatively few measurements of the magnetic
Due to the symmetry properties of a deflection coil
and Maxwell’s equations, measurements on the central
axis and along one line parellel to the central axis give
the field anywhere reasonably close to the axis.

flux.

(b). The surface of best convergence bends rather
sharply towards the source of electrons. Under the best
circumstances, it would have a radius of curvature approx-
imately equal to 0.4 of the distance, gun to screen. Since
such a curvature is impractical for a screen, it is neces-

sary to use dynamic focusing. Therefore, it is to be con-

cluded that the effect known asdegrouping in shadow mask
tubes cannot be eliminated by shaping the magnetic yoke
field such that dynamic focusing becomes unnecessary,
but must be corrected by other means.

(c). However, in the case of a line screen where it
is only necessary to form a vertically converged spot, it
is theoretically possible to design a yoke which would
give the desired result without the use of dynamic con-
vergence.

(d). Relaxation of the conventional symmetry prop-
It
may be possible to eliminate image curvature for asym-

erties of yokes would make these conclusions invalid.

metric yokes. Significant improvements may result from
an investigation of this possibility,

Pl £ Koo,

Peter E. Kaus




