

LB-889

APPLICATION OF LINEAR ACTIVE

FOUR-TERMINAL NETWORK

THEORY TO TRANSISTORS

RADIO CORPORATION OF AMERICA RCA LABORATORIES DIVISION INDUSTRY SERVICE LABORATORY

LB-889

1 OF 16 PAGES

OCTOBER 14, 1952

RADIO CORPORATION OF AMERICA

RCA LABORATORIES DIVISION INDUSTRY SERVICE LABORATORY

LB-889

Application of Linear Active

Four-Terminal Network Theory to Transistors

This report is the property of the Radio Corporation of America and is loaned for confidential use with the understanding that it will not be published in any manner, in whole or in part. The statements and data included herein are based upon information and measurements which we believe accurate and reliable. No responsibility is assumed for the application or interpretation of such statements or data or for any infringement of patent or other rights of third parties which may result from the use of circuits, systems and processes described or referred to herein or in any previous reports or bulletins or in any written or oral discussions supplementary thereto.

Approved

Stunt workeley.

Introduction

With the advent of transistors, considerably greater usage has been made of linear active four-terminal network theory. Some of this usage has been complicated because of differences in terminology. This bulletin is an attempt to express, in a unified system of nomenclature, the application of linear active four-terminal network theory to transistors. It is hoped that this will serve as a step towards a standard system of nomenclature.

Section I deals with the general properties of a linear active four-terminal network. Section II is devoted to the tabulation of circuits associated with transistor applications. For those transistor circuit properties not tabulated in this section, reference should be made to the appropriate equations in Section I. Several examples of the application of material in Sections I and II to transistor circuits are given in Section III.

Section I - Linear Active Four-Terminal Networks and Equations

In general, any linear active four-terminal network is characterized by two equations which interrelate the currents and voltages at its input and output terminals. These equations may be written in either nodal or loop equation form.

A. Circuit With Associated Generator And Load, And Equations

NODAL EQUATIONS

$$I_{1} = y_{11}V_{1} + y_{12}V_{2}$$

$$I_2 = y_{21}V_1 + y_{22}V_2$$

LOOP EQUATIONS

$$V_1 = Z_{11}I_1 + Z_{12}I_2$$

$$V_2 = Z_{21}I_1 + Z_{22}I_2$$

B. Definition Of Transducer Parameters

The above circuit equations, which completely describe the small-signal operation of the transducer, also serve as a guide to defining the parameters. Thus, for example, if $V_2 = 0$, i.e., the output is shorted, then $y_{11} = I_1/V_1$ defines y_{11} as the input admittance when the output is shorted. Continuing in this manner all of the parameters may be similarly defined.

		NODAL			LOOP
у ₁₁	= g ₁₁ + jb ₁₁	<pre>= input admittance with output shorted</pre>	z ₁₁ = r ₁₁ +	j × 1 1 =	input impedance with output open
y ₁₂	= g ₁₂ + jb ₁₂	<pre>= reverse transfer (feedback) admittance with input shorted</pre>	$Z_{12} = r_{12} +$	j × 12 =	reverse transfer (feedback) impedance with input open
y ₂₁	$= g_{21} + jb_{21}$	<pre>= forward transfer ad- mittance with output shorted</pre>	Z ₂₁ = r ₂₁ +	j × _{2 1} =	forward transfer im- pedance with output open
y _{2 2}	= g ₂₂ + jb ₂₂	<pre>= output admittance with input shorted</pre>	$Z_{22} = r_{22} +$	j × 2 2 =	output impedance with input open

C. Transformation Equations

In general, the parameters within each pair of equations are independent of each other. The two sets of parameters, however, are related by the following transformation equations:

NODAL	LOOP						
$y_{11} = Z_{22}/\Delta_{Z}$	$Z_{11} = y_{22}/\Delta_y$						
$y_{12} = -z_{12}/\Delta_{Z}$	$Z_{12} = -y_{12}/\Delta_y$						
$y_{21} = -z_{21}/\Delta_{Z}$	$z_{21} = -y_{21}/\Delta_y$						
$y_{22} = z_{11}/\Delta_{Z}$	$Z_{22} = y_{11}/\Delta_y$						
$\Delta_{Z} = \begin{vmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{vmatrix}$	$\Delta_{y} = \begin{vmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{vmatrix}$						

D. Definition Of Amplification Factors

In addition to the parameters already discussed, it is convenient to define various amplification factors which serve as indexes of performance. Since the network may in general be bilateral, each factor must be defined in the reverse as well as in the forward direction.

Current Amplification Factors

The current amplification factor is defined as the ratio of the negative of the current at one pair of shorted terminals to the current introduced at the other pair of terminals.

- α_{21} = forward current amplification factor
 - = ratio of the negative current at the shorted output terminals to the _current introduced at the input terminals.
- α_{12} = reverse current amplification factor
 - = ratio of the negative current at the shorted input terminals to the current introduced at the output terminals.

Voltage Amplification Factors

The voltage amplification factor is defined as the ratio of the voltage at one pair of open terminals to the voltage applied to the other pair of terminals. Note that voltage amplification as defined in reference (6) is only the magnitude of voltage amplification as defined here.

- μ_{21} = forward voltage amplification factor
 - = ratio of the voltage at the open output terminals to the voltage introduced at the input terminals.
- μ_{12} = reverse voltage amplification factor
 - = ratio of the voltage at the open input terminals to the voltage introduced at the output terminals.

Power Amplification Factors

The power amplification factor is defined as the maximum power amplification in a given direction when the transfer impedance or the transfer admrttance in the opposite direction is zero. This definition is introduced for the first time since it is believed that the forward power amplification factor in particular may be more useful than either the forward current or the forward voltage amplification factor as a single index of performance.

- φ_{21} = forward power amplification factor
 - = maximum power amplification from the *input to the output* terminals when the *reverse* transfer (feedback) impedance or the *reverse* transfer (feedback) admittance is zero.
- φ_{12} = reverse power amplification factor
 - = maximum power amplification from the *output to the input* terminals when the *forward* transfer impedance or the *forward* transfer admittance is zero.

E. Equation For Amplification Factors

The amplification factors can be readily determined in terms of the impedance or admittance parameters already defined.

LOOD

NODAL		LUUP
$\alpha_{21} = -y_{21}/y_{11}$	μ ₂₁	= Z ₂₁ /Z ₁₁
$\alpha_{12} = -y_{12}/y_{22}$	μ ₁₂	= Z ₁₂ /Z ₂₂
$\mu_{21} = -y_{21}/y_{22}$	α 2 1	= .Z ₂₁ /Z ₂₂
$\mu_{12} = -y_{12}/y_{11}$	α,,	= Z ₁₂ /Z ₁₁

$$\phi_{21} = \frac{|y_{21}|^2}{49_{11}9_{22}}$$

$$\phi_{12} = \frac{|y_{12}|^2}{49_{11}9_{22}}$$

$$\varphi_{21} = \frac{|z_{21}|^2}{4r_{11}r_{22}}$$

$$\varphi_{12} = \frac{|z_{12}|^2}{4r_{11}r_{22}}$$

F. Input And Output Impedances

The input and output impedances of the transducer under circuit conditions are, of course, dependent on the actual load and source impedances respectively. These impedances are readily determined by conventional analysis and are given by:

NODAL

$$y_i = g_i + jb_i = input admittance$$

$$= y_{11} - \frac{y_{12}y_{21}}{y_{22}+Y_{1}}$$

$$y_0 = g_0 + jb_0 = output admittance$$

$$= y_{22} - \frac{y_{12}y_{21}}{y_{11} + Y_{g}}$$

L00P

$$z_i = r_i + jx_i = input impedance$$

$$= z_{11} - \frac{z_{12}z_{21}}{z_{22}+z_{1}}$$

$$z_0 = r_0 + jx_0 = output impedance$$

$$= Z_{22} - \frac{Z_{12}Z_{21}}{Z_{11}+Z_{q}}$$

G. Amplification Under Arbitrary Conditions

The values of amplification for arbitrary values of generator and load impedances are given by the following equations:

NODAL

Forward Current Amplification

$$= \frac{y_{21}Y_1}{y_{11}(y_{22}+Y_1)-y_{12}y_{21}}$$

Reverse Current Amplification

$$= \frac{y_{1\cdot 2}Y_{g}}{y_{2\cdot 2}(y_{1\cdot 1}+Y_{g})-y_{1\cdot 2}y_{2\cdot 1}}$$

Forward Voltage Amplification

$$= - \frac{y_{21}}{y_{22} + y_1}$$

Reverse Voltage Amplification

$$= - \frac{y_{12}}{y_{11} + Y_{0}}$$

Forward Power Amplification

$$= \left| \frac{y_{21}}{y_{22} + Y_{1}} \right|^{2} \frac{G_{1}}{g_{1}}$$

L00P

Forward Voltage Amplification

$$= \frac{z_{21}Z_{1}}{z_{11}(z_{22}+Z_{1})-z_{12}z_{21}}$$

Reverse Voltage Amplification

$$= \frac{z_{12}Z_{g}}{z_{22}(z_{11}+Z_{g})-z_{12}z_{21}}$$

Forward Current Amplification

$$= -\frac{Z_{21}}{Z_{22}+Z_{1}}$$

Reverse Current Amplification

$$= -\frac{Z_{12}}{Z_{11}+Z_{0}}$$

Forward Power Amplification

$$= \left| \frac{z_{21}}{z_{22} + z_1} \right|^2 \frac{R_1}{r_1}$$

Reverse Power Amplification

$$= \left[\frac{y_{12}}{y_{11} + Y_{q}} \right]^{2} \frac{G_{q}}{g_{q}}$$

Reverse Power Amplification $= \left| \frac{z_{12}}{z_{11} + z_{1}} \right|^{2} \frac{R_{g}}{r_{1}}$

H. Equation For Conjugate Impedance Match

The maximum power amplification is obtained when the generator and the load impedances are the complex conjugate of the input and output impedances respectively.

NODAL

Let:

$$G_{N} = \frac{g_{12}g_{21} - b_{12}b_{21}}{g_{11}g_{22}}$$

$$B_{N} = \frac{b_{12}g_{21} - b_{21}g_{12}}{2g_{11}g_{22}}$$

Then:

Input Admittance

=
$$g_{11} \sqrt{1-G_N-B_N^{2^1}}$$
 + $j(b_{11}-g_{11}B_N)$

Output Admittance

=
$$g_{2\cdot 2} \sqrt{1-G_N-B_N^2} + j(b_{2\cdot 2}-g_{2\cdot 2}B_N)$$

Forward Power Amplification

$$= \frac{|y_{21}|^2}{g_{11}g_{22}[2+2\sqrt{1-G_N-B_N^2-G_N}]}$$

Reverse Power Amplification

$$= \frac{|y_{12}|^2}{g_{11}g_{22}[2+2\sqrt{1-G_N-B_N^2-G_N}]}$$

L00P

Let:

$$R_{N} = \frac{r_{12}r_{21} - x_{12}x_{21}}{r_{11}r_{22}}$$

$$X_{N} = \frac{X_{12} r_{21} - X_{21} r_{12}}{2 r_{11} r_{22}}$$

Then:

Input Impedance

=
$$r_{11}\sqrt{1-R_N-X_N^2} + j(x_{11}-r_{11}X_N)$$

Output Impedance

=
$$r_{22}\sqrt{1-R_N-X_N^2}$$
 + $j(x_{22}-r_{22}X_N)$

Forward Power Amplification

$$= \frac{\left|z_{21}\right|^{2}}{r_{11}r_{22}\left[2+2\sqrt{1-R_{N}-X_{N}^{21}-R_{N}}\right]}$$

Reverse Power Amplification

$$= \frac{|z_{12}|^2}{|r_{11}|^2[2+2\sqrt{1-R_N-X_N^{21}-R_N}]}$$

I. Equations For Image Impedance Natch

The transducer is image impedance matched when the generator and load impedances are equal to the input and output impedances respectively.

NODAL

LOOP

Input Admittance

$$= y_{11} \sqrt{1 - \alpha_{12} \alpha_{21}}$$

Output Admittance

$$= y_{22} \sqrt{1 - \alpha_{12} \alpha_{21}}$$

Input Impedance

$$= Z_{11} \sqrt{1 - \alpha_{12} \alpha_{21}}$$

Output Impedance

$$= Z_{22} \sqrt{1 - \alpha_{12} \alpha_{21}}$$

CUITS	COMMON COLLECTOR	V _{bc} = z _{bbc} I _b + z _{bec} I _e	Vec = Zebc Ib + Zeec Ie	3L SZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	REVERSE	$a_{be} = + \frac{z_{bec}}{z_{bbc}}$ $\mu_{be} = + \frac{z_{bec}}{z_{eec}}$ $- \frac{ z_{bec} }{ z_{bec} }$	czb + czc	Zebc = cZm +cZc Zeec = cZe +cZc	$(L \rightarrow (3L)$ $V_{bc} = V_{be} - V_{ce}; V_{ec} = -V_{ce}$ $Z_{bbc} = Z_{bee} - Z_{cee} + Z_{cce}$ $Z_{bc} = Z_{cce} - Z_{cbe}$ $Z_{ebc} = Z_{cce}$ $Z_{ecc} = Z_{cce}$	$ \begin{pmatrix} 2L & \rightarrow (3L) \\ V_{bc} & \rightarrow (3L) \\ V_{bc} & \rightarrow (2L) \\ V_{bc} & \rightarrow $	_ebc _ccb _ecb Zeec=Zeeb-Zecb ^{-Z} ceb ^{+Z} ccb	GENT TO THE CAME T	REVERSE	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(3L) \xrightarrow{\bullet} (6L)$ $c^{Z} b = Z_{bbc} - Z_{bec}$ $c^{Z} c = Z_{bec}$ $c^{Z} e = Z_{ecc} - Z_{bec}$ $c^{Z} m = Z_{ebc} - Z_{bec}$	(L) (ce : Vec = -Vec b = Zm	E _Z -	(5L) (6L) V _{bc} = -V _{cb} ; V _{ec} = V _{eb} -V _{cb}	6 b 2 m
EQUIVALENT CIRCUITS	COMMON	V _{bc} = z _{bbc}	Vec = Zebc	I b c z bos z bos z c z bos z bo	FORWARD	$\frac{d_{e}b^{+} + \frac{Zebc}{Zec}}{\mu_{e}b^{+} + \frac{Zebc}{Zbbc}}$ $\frac{\mu_{e}b^{+} + \frac{Zebc}{Zbbc}}{\mu_{e}b^{-}}$	$ \begin{array}{c} (6L) + 3L \\ z_{bbc} = c_{z_{b}} + c_{z_{c}} \\ z_{bec} = c_{z_{c}} \end{array} $	Zebc = Zeec =	(L) - (3L) V _{bc} = V _{be} -V _{ce} ; V _{cc} Z _{bc} = Z _{be} -Z _{ce} = Z _{ce} = Z _{ce} Z _{ebc} = Z _{cce} Z _{ce} e	$\begin{pmatrix} 2L & \rightarrow (3L) \\ V_{bc} = -V_{cb} & \text{i} & V_{ec} = V_{eb} \\ Z_{bbc} = Z_{ccb} & Z_{ceb} \\ Z_{bec} = Z_{ccb} - Z_{ceb} \end{pmatrix}$		d S S S S S S S S S S S S S S S S S S S	FORWARD	N 3			c ^z e = e ^z e c ^z m = -e ^z m	(5L) - (6)	24 = 0.2 C = 0
QUIVALI	COMMON BASE	Veb=Zeeb Ie + ZecbIc	Vcb=zceb Ie +zccb Ic	Ie Ic	REVERSE	$\frac{\alpha_{ec} + \frac{Zecb}{Zeeb}}{\mu_{ec} + \frac{Zecb}{Zecb}}$ $\frac{1}{\rho_{ec} + \frac{Zecb}{Zecb}}$ $\frac{1}{\rho_{ec} + \frac{Zecb}{Zecb}}$ $\frac{1}{\rho_{ec} + \frac{1}{\rho_{ec}}}$	$\begin{bmatrix} 2 \\ -b^z \\ -b^z \end{bmatrix}$	$z_{ceb} = b^2m + b^2b$ $z_{ccb} = b^2c + b^2b$	$(3L) \longrightarrow (2L)$ $V_{eb} = V_{ec} - V_{bc}; V_{cb} = -V_{bc}$ $Z_{eeb} = Z_{bbc} - Z_{ebc}$ $Z_{ceb} = Z_{bbc} - Z_{ebc}$ $Z_{ceb} = Z_{bbc} - Z_{bec}$ $Z_{ccb} = Z_{bbc} - Z_{bec}$	$(\Box) \rightarrow (\Box)$ $V_{eb} = V_{be} ; V_{cb} = V_{ce} - V_{be}$ $Z_{ecb} = Z_{bbe}$ $Z_{ecb} = Z_{be}$	ceb bbe cbe Zccb ZbbeZbceZcbe+Zcce	5 L L C L C L C L C L C L C L C L C L C	REVERSE	$\frac{b^{2}m^{+}b^{2}b}{b^{2}c^{+}b^{2}b} \frac{de^{c}_{c} \frac{b^{2}b}{b^{2}e^{+}b^{2}b}}{e^{c}_{c}^{-}b^{2}e^{+}b^{2}b} e^{c}_{c}$ $\frac{b^{2}m^{+}b^{2}b}{b^{2}e^{+}b^{2}b} \frac{h^{e}_{c}}{h^{2}c^{+}b^{2}b} \frac{b^{2}b}{h^{2}c^{+}b^{2}b} h^{2}_{c}$ $\phi_{c} = \frac{b^{2}m^{+}b^{2}b}{4(b^{c}_{c}^{+}b^{c}b)^{2}(b^{c}_{c}^{+}b^{c}b)}$ $\phi_{ec} = \frac{b^{2}b}{4(b^{c}_{c}^{+}b^{c}b)^{2}(b^{c}_{c}^{+}b^{c}b)}$	$(2L) - (5L)$ $b^{Z}e = Zeeb - Zecb$ $b^{Z}b = Zecb$ $b^{Z}c = Zccb - Zecb$ $b^{Z}m = Zceb - Zecb$	$(6L) \leftarrow (5L)$ $V_{bb} = V_{c} - V_{bc}; V_{cb} = -V_{bc}$ $V_{bc} = c \cdot z_{e}$ $V_{bc} = c \cdot z_{e}$ $V_{bc} = c \cdot z_{e}$	b ² c - c ² c ⁷ c ² m b ² m = c ² m	(4L) (5L) V _{eb} V _{eb} : V _{cb} -V _e	b ^z e = e ^z e b ^z b = e ^z b b ^z c = e ^z c [–] e ^z m
IVED E	COM	Veb=Zeeb	V _{cb} =z _{ce} b		FORWARD	$a_{ce} = + \frac{2ceb}{2ccb}$ $\mu_{ce} = + \frac{2ceb}{2ceb}$ $\frac{12ceb}{4}$	(5L) → (2L) Z _{eeb} = b ^Z _e	Zceb		g g	Zccb Z		FORWARD	Z 3	(2L) + (gr) + (gr) pz _e			(4L) + (4L) + (4b)	bze eze bzb ezb bzc ezc
LOOP DERIVED	COMMON EMITTER	Vbe = zbbe Ib + zbce Ic	Vc=zcbe Ib+zcce Ic	(I) To the state of the state o	REVERSE	$\frac{d_{bc} = +\frac{Z_{bce}}{Z_{be}}}{\mu_{bc} = +\frac{Z_{bce}}{Z_{cce}}}$ $= \frac{1Z_{bce}}{\Phi_{c} = \frac{1}{4} \frac{Z_{bce}}{L_{be}}}$	$\begin{array}{c} (4L) - (1L) \\ z_{bbe} = e^{z_{b}} + e^{z_{e}} \\ z_{bc} = e^{z_{e}} \end{array}$	Zcbe= eZm + eZe Zcce= eZc + eZe	$(2L) - (1L)$ $V_{be} = V_{eb} ; V_{ce} = V_{cb} - V_{eb}$ $Z_{bbe} = Z_{eeb} - Z_{ecb}$ $Z_{cbe} = Z_{eeb} - Z_{ceb}$ $Z_{cce} = Z_{eeb} - Z_{ceb}$	3L)-+(IL) Vbe=Vbc-Vc; Vce=-Vcc Zbbe=Zbbc-Zebc Zbce=Zec-Zbc Zbce=Zec-Zebc		4L)	REVERSE	$\frac{e^{z}m^{+}e^{z}}{e^{z}c^{+}e^{z}e} = \frac{e^{z}e^{-}e^{$	$(1L) \rightarrow (4L)$ $e^{Z}b = Zbbe - Zbce$ $e^{Z}e = Zbce$ $e^{Z}c = Zcce \tau Zbce$ $e^{Z}m = Zcbe - Zbce$	$(5L) \leftarrow (4L)$ $(be^{\pm} - \sqrt{bb} : \sqrt{ce} = \sqrt{cb} - \sqrt{bb}$ $e^{2}b^{\pm}b^{2}b$ $e^{2}e^{\pm}b^{2}$	E-0 5	-(4L) bc-Vec; Vee=-Vec	
T00	соммог	Vbe = Zbbe	V _c = z _{cbe}	The state of the s	FORWARD	$a_{Cb} = + \frac{z_{Cbe}}{z_{Cce}}$ $\mu_{Cb} = + \frac{z_{Cbe}}{z_{bbe}}$ $= \frac{ z_{Cbe} ^2}{4^{6} bbe^{-Cce}}$	4L - (L) Zbbe = eZb Zbce = eZe	Zcbe= Zcce=	(2L) (11) V _{be} = -V _e _b i Z _{be} = z _e i Z _{ce} = z _e c	3) (1) Vbe=Vbc-Vc; Vce Zbbe=Zbbc-Zebc Zbce=Zeec-Zbc	Z _{CCe} = Z _{eec}		FORWARD			(5L) - (4b) - (4	e-c p-c	(6L) - (4L) Vbe = Vbc - Vc ; Vce =	0 Ze = CZe
UITS	COMMON COLLECTOR	c+ Ybec Vec	Ie =yebc Vbc + yeec Vec	N Oddy Oddy O	REVERSE	$a_{be} = -\frac{y_{bec}}{y_{eec}}$ $\mu_{be} = -\frac{y_{bec}}{y_{bbc}}$ $\mu_{be} = \frac{y_{bec}}{y_{bec}}$	ybc + cybe	Yebc=cym-cybe Yec=cyec+cybe	(IN) (3N) $V_{bc} = V_{ce} \cdot V_{ce} = -V_{ce}$ $Y_{bbc} = Y_{bbe}$ $Y_{bec} = - (Y_{bbe} + Y_{bce})$ $Y_{ebc} = - (Y_{bbe} + Y_{cbe})$ $Y_{ebc} = - (Y_{bbe} + Y_{cbe})$ $Y_{ecc} = Y_{bbe} + Y_{cbe}$	$(2N) \rightarrow (3N)$ $V_{bc} = -V_{cb}; V_{ec} = V_{eb} -V_{cb}$ $Y_{bbc} = Y_{eeb} + Y_{eeb} + Y_{ccb}$ $Y_{bec} = -(Y_{eeb} + Y_{ceb})$ $Y_{bec} = -(Y_{eeb} + Y_{ccb})$	q	20 20 Amily 20 20 20 Amily 20 20 20 20 20 20 20 20 20 20 20 20 20	REVERSE	$\alpha_{eb} = \frac{c^{y_m} - c^{y_be}}{c^{y_c} + c^{y_be}} \alpha_{be} = \frac{c^{y_be}}{c^{y_c} + c^{y_be}}$ $\mu_{eb} = -\frac{c^{y_m} - c^{y_be}}{c^{y_c} + c^{y_be}} = \frac{c^{y_be}}{c^{y_c} + c^{y_be}}$ $\phi_{eb} = \frac{c^{y_m} - c^{y_be}}{4(c^{y_bc} + c^{y_be})(c^{y_c} + c^{y_be})}$ $\frac{c^{y_m} - c^{y_be}}{c^{y_be} + c^{y_be}}$ $\phi_{be} = \frac{c^{y_m} - c^{y_be}}{4(c^{y_bc} + c^{y_be})(c^{y_c} + c^{y_be})}$	(3N) (6N) cybc = ybbc + ybec cybc = - ybec cyec = yecc + ybec cym = yebc - ybec	(4N) - (6N) V _{bc} =V _{be} -V _{ce} ; V _{ec} = -V _{ce} V _{bc} = eV _{bc} V _{be} = eV _{bc}	E E) V _c =V _{eb} -V _{cb}	hVa ⁺ mVa ⁻
CIRCUITS		I _b =y _{bbc} V _b	I _e =y _{ebc} V _b	200 200 X	FORWARD	$d_{eb} = -\frac{y_{ebc}}{y_{bbc}}$ $\mu_{eb} = -\frac{y_{ebc}}{y_{ec}}$ $\phi_{eb} = \frac{ y_{ebc} ^2}{ y_{ebc} ^2}$	(6N) → (3N) y _b vc = cy _b c + cy _b e y _b ec = cy _b e	Yebc = Yeec =	\(\lambda_{be}^{-1}\rapprox_{be}^{-1}\rappox_{be}^{-1}\rapprox_{be}^{-1}\rappox_{b	$\begin{pmatrix} 2N - 3N \\ V_{bc} = -V_{cb}; \\ V_{bbc} = V_{eeb}; \\ V_{bec} = -(y_{cb}); \\ V_{cbc} = -(y_{cbc}); \\ $	Yeec = Yeeb	1-1-2	FORWARD	$\alpha_{eb} = \frac{\sqrt{M - c N_{be}}}{c^{N_{cc}} + c^{N_{be}}}$ $\mu_{eb} = \frac{c^{N_{bc}} + c^{N_{be}}}{c^{N_{cc}} + c^{N_{be}}}$ $\phi_{eb} = \overline{4(c^{q}_{bc} + c^{q}_{bc})}$	(3N) - (6N) (cybc = - (cybc = - (cybc = - (cym = -	$ \frac{4N}{\sqrt{bc}} + \frac{6N}{\sqrt{bc}} $ $ \sqrt{bc} = \sqrt{be} - \sqrt{ce}; \sqrt{ec} = \sqrt{bc} $ $ \sqrt{be} = \sqrt{bc} $	cym=-eym	$\begin{pmatrix} 5N - 6N \\ V_{bc} = -V_{cb} ; V_{ec} = V_{eb} - V_{cb} \end{pmatrix}$	cybe = byeb +bym cyec = byec -bym
VALENT	BASE	o+ YecbVcb	+ Yccb Vcb	N	REVERSE	$a_{ec} = -\frac{y_{ec}b}{y_{cc}b}$ $\mu_{ec} = -\frac{y_{ec}b}{y_{eb}}$ $\phi_{ec} = \frac{ y_{ec}b }{ y_{ec}b }$	Veb + byec	b Ym [—] b Yec b Ycb [‡] b Yec	$N) \rightarrow (2N)$ $b^{b} V_{ec} V_{bc}; V_{cb} = -V_{bc}$ $V_{eeb} = V_{eec} + V_{ebc}$ $V_{ceb} = -(V_{eec} + V_{bec})$ $V_{ceb} = -(V_{eec} + V_{bec})$ $V_{ceb} = -(V_{eec} + V_{bec})$ $V_{ccb} = V_{bbc} V_{bec} V_{bec}$	V _{cb} = V _{ce} -V _{be} Y _{cbe} +Y _{bce} +Y _{cce} cce + Y _{bce})	, ego, . eoo	Z qə,w,q	REVERSE	α _{ec̄} + by _{ec} α _{ec̄} + by _{cb} + by _{ec} μ _{ec} + by _{ec} + by _{ec} μ _{ec} + by _{ec} + by _{ec}	-5N byeb = yeeb + yecb byec = -yecb bycb = yecb + yecb bym = yeeb - yecb	; V _{cb} =-V _{bc} -c/m +c/m		Cb = Cc - Cbe	Į.
D EQUIVALE	соммои	Ie = yeeb Veb+ yecbVcb	Ic = Yceb Veb + Yccb Vcb	49 V	FORWARD	$d_{ce} = -\frac{y_{ceb}}{y_{eeb}}$ $\mu_{ce} = -\frac{y_{ceb}}{y_{ccb}}$ $\phi_{ce} = \frac{ y_{ceb} ^2}{ y_{ceb} ^2}$	5N - (2N) Ye eb = b Yeb + b Yec Yecb = by ec	Yceb = b Ym - Yccb = b Ycb	3N - (2N) V _{eb} =V _{ec} -V _{bc} ; V _{cb} Y _{ecb} = Y _{ecc} Y _{ccb} = (Y _{ecc} + Y _{ccb} = (Y _{ecc} + Y _{ccb} = Y _{ccb} + Y _{ccb} = Y _{ccb} + Y _{ccb} = Y _{bbc} +Y _{bec} +Y _{bc}	$(N) \rightarrow (2N)$ $V_{eb} = -V_{be} : V_{cb} = V_{ce} - V_{b}$ $Y_{eeb} = Y_{bbe} + Y_{cbe} + Y_{bce} + Y_{bce}$ $Y_{ecb} = -(Y_{cce} + Y_{bce})$	yccb ycce	Ash de Mark d	FORWARD	αce - b/m - b/ec b/eb/b/ec - μ/eb/eb/ec - μ/m - b/ec - μ/ec	(2N) - (5N) byeb = yeeb + byec = -yecb bycb = yccb +: bym = yceb -:	6N - 5N V _{eb} = V _{ec} - V _{ec} ; V _c b V _{eb} = cV _e = cV _m b V _{ec} = cV _e c + cV _m	bycb cybo bym= cym	4N - 5N Veb = -Veb : Veb	byec =eyce bycb = eybc
DERIVED	EMITTER	+ ybce Vce	+ycce Vce	300/ 300/ 300/ 300/ 300/ 300/ 300/ 300/	REVERSE	$d_{bc} = -\frac{y_{bce}}{y_{cce}}$ $\mu_{bc} = -\frac{y_{bce}}{y_{bbe}}$ $\phi_{bc} = \frac{ y_{bce} ^2}{4g_{bbe} g_{cce}}$	1 + 1	e ym = e y bc e ycet e y bc	-V ₆ b; V _{ce} =V _{cb} -V _{eb} -V _{eb} ; V _{ce} =V _{cb} -V _{eb} -V _{eb} ; V _{ce} +V _{cb} +V _{ccb} -V _{ccb} +V _{ccb} -V _{ccb} +V _{ceb}) -V _{ccb} +V _{ceb})	>-= o	= ybbtybectyebctyeec	A S S S S S S S S S S S S S S S S S S S	REVERSE	2bc + e ybc e ybc + e ybc wbc + ybc + e ybc wbc - ybc + e ybc c e ybc c e g + e gbc ybc ybc ybc ybc ybc	+y _{bce} +y _{bce} -y _{bce}	ce=Vcb-Veb bym		_=_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	+ c/m
NODAL	COMMON EMITTER	Ib = ybbe Vbe + ybce Vce	Ic = ycbe Vbe + ycce Vce	S S S S S S S S S S S S S S S S S S S	FORWARD	$a_{cb} = -\frac{y_{cbe}}{y_{bbe}}$ $\mu_{cb} = -\frac{y_{cbe}}{y_{cce}}$ $\frac{ y_{cb} ^2}{4g_{bbe}g_{cce}}$	(4 N) → (N)	Ycbe eym Ycce eyc	(2N)(IN) $V_{be} = -V_{eb} ; V_{ce} = V_{cb} - V_{cb}$ $y_{bbe} = y_{ee} + y_{ec} + y_{ce}$ $y_{be} = -(y_{cc} + y_{ec})$ $y_{cbe} = -(y_{cc} + y_{ce})$ $y_{cce} = y_{cc}$	$(3N) \longrightarrow (1N)$ $V_{be} = V_{bc} - V_{ec} ; V_{ce} = -V_{ec}$ $Y_{bbe} = Y_{bbc}$ $Y_{bce} = -(Y_{bbc} + V_{ec})$	Ycce = Ybbd-Y	adva adva adva adva adva adva	FORWARD	$a_{Cb} = \frac{e Vm^{-}e V_{bc}}{e V_{be}^{+}e V_{bc}} a_{bc} = \frac{e V_{bc}}{e V_{be}^{+}e V_{bc}}$ $\mu_{Cb} = \frac{e V_{be}^{+}e V_{bc}}{e V_{be}^{-}e V_{be}^{-}e V_{bc}^{-}e V_{be}^{-}e V_{bc}^{-}e V_{be}^{-}e V_{be$	(1N) (4N) eYbe = Ybbe + Ybc eYbc = - Ybce eYce = Ycce + Ybc eYm = Ycbe - Ybc	(5N) (4N) V _{be} - V _e b; V _{ce} = V _{cb} eY _{be} = bY _e b†ym eY _{be} = bY _c b	e/ce	(6N) (4N) V _{be} -V _{bc} -V _{ec}	
	SNO	OITA	EØN	TWO - GEN		SHOTOAH HMA		SNO	DITAUDE NOITAMRO	DASNART		ONE - GEN.		SAOTDAR RMA	SNO	ITAUQ3 NOIT	AM 90	JENART	

AND EQUATIONS TRANSISTOR CIRCUITS

Forward current amplification =
$$-\frac{\alpha_{21}}{1+\sqrt{1-\alpha_{12}\alpha_{21}}}$$

Reverse current amplification =
$$-\frac{\alpha_{12}}{1+\sqrt{1-\alpha_{12}\alpha_{21}}}$$

Forward voltage amplification =
$$\frac{\mu_{21}}{1+\nu 1-\alpha_{12}\alpha_{21}}$$

Reverse voltage amplification =
$$\frac{\mu_{12}}{1+\sqrt{1-\alpha_{12}\alpha_{21}}}$$

If all transducer parameters are real,

Forward power amplification =
$$\frac{\alpha_{21}\mu_{21}}{(1+\sqrt{1-\alpha_{12}\alpha_{21}})^2}$$

Reverse power amplification =
$$\frac{\alpha_{12}\mu_{12}}{(1+\sqrt{1-\alpha_{12}\alpha_{21}})^2}$$

J. Equations For Iterative Impedance Match

The transducer is iterative impedance matched if it is an element of an infinite number (or the equivalent thereof) of cascaded identical transducers.

NODAL

L00P

Let:

$$y_{m} = \frac{y_{11} + y_{22}}{2}$$

Let:

$$z_{m} = \frac{z_{11} + z_{22}}{2}$$

Then:

Then:

Input Admittance

Input Impedance

$$= -y_{22} + y_{m} \left[1 \pm \sqrt{1 - \frac{y_{12}y_{21}}{y_{m}}} \right]$$

$$= -z_{22} + z_{m} \left[1 + \sqrt{1 - \frac{z_{12} z_{21}}{z_{m}}} \right]$$

Output Admittance

Output Impedance

= -
$$y_{11} + y_{m} \left[1 \pm \sqrt{1 - \frac{y_{12}y_{21}}{y_{m}}}\right]$$

$$= -z_{11} + z_{m} \left[1 \pm \sqrt{1 - \frac{z_{12} z_{21}}{z_{m}}} \right]$$

The equations in Section IG may be used to obtain the various circuit amplifications.

K. Equivalent Circuits

While formal manipulation of the admittance and impedance parameters of a network will result in the correct algebraic expression for whatever quantity is desired, it is nevertheless convenient to be able to express the basic relationships of Section IA in terms of an equivalent circuit.

Two-Generator Equivalent Circuits

When two generators are used the circuit follows directly from the equations of Section IA.

Single-Generator Equivalent Circuits

It is often desirable to express the network in terms of a single-generator equivalent circuit. This may be done in several ways. For example, z_{21} may be separated into two parts:

$$Z_{21} = Z_{12} + (Z_{21} - Z_{12}).$$

The basic equations then become

$$V_1 = Z_{11}I_1 + Z_{12}I_2$$

$$V_2 = Z_{12}I_1 + Z_{22}I_2 + (Z_{21} - Z_{12})I_1$$

The expressions to the left of the dotted line represent a passive network with a common mutual impedance, and hence is representable by a T network. The remainder of the expression represents a voltage source. Hence the corresponding loop network, shown below, can readily be drawn. For an indication of the numerous other equivalent circuits that can be derived, see reference (3).

Measurement of the actual parameters of a given network may be made by the methods outlined in reference (5).

Section II - Equivalent Circuits of Transistors

A compilation of the more useful transistor equivalent circuits is given on pages eight and nine. Included with the circuits are the amplification factors and the transformation equations which enable one to go readily from a nodal (or loop) derived equivalent circuit to any other nodal (or loop) derived equivalent circuit. However, in order to go from a nodal to the corresponding loop derived equivalent circuit, or vice versa, the transformation equations of section IC are required.

The notation used in this tabulation was chosen in order to avoid ambiguity among the various circuit parameters. When applied to the two-generator equivalent circuits this notation basically consists of the conventional two letter subscript. To this conventional notation, a third subscript has been added, which designates the common terminal between the input and output circuit. Thus $z_{\rm bbe}$ is the base self impedance of the transistor in a common-emitter circuit, and $y_{\rm ceb}$ is the transfer admittance to the collector from the emitter in a common-base circuit. If only one circuit connection is being considered or if no ambiguity arises, the last subscript designating the common electrode may be omitted.

When applied to the single-generator equivalent circuit, a presubscript designates the common electrode between the input and output circuits. For the π -equivalent or nodal-derived network, admittances are used with the two post-subscripts designating the terminals between which the admittance is located. Thus $_{\text{c}}y_{\text{be}}$ is the admittance between the base and the emitter in a common-collector circuit. For the T-equivalent or loop-derived network there is one node in common with all the elements of the T. Thus only one post-subscript is necessary to designate the terminal to which the impedance is connected. Accordingly $_{\text{b}}z_{\text{c}}$ is the impedance in a common-base circuit between the collector and the center of the T. In both the π and T networks the generator parameter is designated by the subscript m. If only one circuit connection is being considered or if no ambiguity arises, the pre-subscript designating the common electrode may be omitted.

When it is desirable to use admittances in place of impedances, or vice-versa, ambiguity may be avoided by using reciprocal notation. Thus $1/y_{\tt eeb}$ is the emitter self impedance in the two-generator, common-base, nodal-derived, equivalent circuit, and $1/_{\tt e}z_{\tt m}$ is the generator admittance in the single-generator, common-emitter, loop-derived equivalent circuit.

Section III - Illustrative Calculations

Consider a junction transistor in a common-base circuit for which the following low-frequency open-circuited impedance measurements have been made.

$$z_{11} = z_{eeb} = 199 \text{ ohms}$$
 $z_{21} = z_{ceb} = 0.503 \text{ megohm.}$ $z_{12} = z_{ecb} = 182 \text{ ohms}$ $z_{22} = z_{ccb} = 0.5145 \text{ megohm}$

Therefore the two-generator equivalent circuit (21) of Section II is:

Using these data, the amplification factors can be computed from Section IE,

$$\mu_{21} = \mu_{ce} = z_{ceb}/z_{eeb} = 2,530$$

$$\mu_{12} = \mu_{ec} = z_{ecb}/z_{ccb} = 354 \times 10^{-6}$$

$$\alpha_{21} = \alpha_{ce} = z_{ceb}/z_{ccb} = 0.977$$

$$\alpha_{12} = \alpha_{ec} = z_{ecb}/z_{eeb} = 0.915$$

$$\phi_{21} = \phi_{ce} = \frac{|z_{ceb}|^2}{4r_{eeb}r_{ccb}} = 620$$

$$\phi_{12} = \phi_{ec} = \frac{|z_{ceb}|^2}{4r_{eeb}r_{ccb}} = 81 \times 10^{-6}$$

Since all elements are real, the image match equations of Section II can be used. Thus the input and output match impedances are:

Input Impedance =
$$z_{eeb}\sqrt{1-\alpha_{ec}\alpha_{ce}}$$
 = 64.8 ohms

Output Impedance = $z_{ccb}\sqrt{1-\alpha_{ec}\alpha_{ce}}$ = 167,000 ohms

and the amplification values for these conditions are:

Forward current amplification =
$$-\frac{\alpha_{ce}}{1+\sqrt{1-\alpha_{ec}\alpha_{ce}}}$$
 = -0.737
Reverse current amplification = $-\frac{\alpha_{ee}}{1+\sqrt{1-\alpha_{ec}\alpha_{ce}}}$ = -0.690
Forward voltage amplification = $\frac{\mu_{ce}}{1+\sqrt{1-\alpha_{ec}\alpha_{ce}}}$ = 1,910

Reverse voltage amplification =
$$\frac{\mu_{ec}}{1+\sqrt{1-\alpha_{ec}\alpha_{ce}}} = 267 \times 10^{-6}$$
Forward power amplification =
$$\frac{\alpha_{ce} \, \mu_{ce}}{(1+\sqrt{1-\alpha_{ec}\alpha_{ce}})^2} = 1,408 \, (31.5 \, db)$$
Reverse power amplification =
$$\frac{\alpha_{ec} \, \mu_{ec}}{(1+\sqrt{1-\alpha_{ec}\alpha_{ce}})^2} = 184 \times 10^{-6}$$

The one-generator equivalent circuit can be obtained by using the transformation equations of Section II. Thus:

$$_{b}z_{e}$$
 = z_{eeb} - z_{ecb} = 17 ohms $_{b}z_{c}$ = z_{ccb} - z_{ecb} = 0.5145 megohm
 $_{b}z_{b}$ = z_{ecb} = 182 ohms $_{b}z_{m}$ = z_{ceb} - z_{ecb} = 0.503 megohm

so that the equivalent circuit (51) of Section II is:

If the common-emitter one-generator equivalent circuit is desired, the (5) (4) transformation equations of Section II are used. Thus:

$$V_{be} = -V_{eb}$$
 $V_{ce} = V_{cb} - V_{eb}$
 $e^{z}_{b} = {}_{b}z_{b} = 182 \text{ ohms}$ $e^{z}_{c} = {}_{b}z_{c} - {}_{b}z_{m} = 11.5 \text{ K ohms}$
 $e^{z}_{e} = {}_{b}z_{e} = 17 \text{ ohms}$ $e^{z}_{m} = -{}_{b}z_{m} = -0.503 \text{ megohm}$

so that the equivalent circuit (4) of Section II is:

If the common-collector one-generator equivalent circuit is desired, the (51) (6) transformation equations of Section II are used. Thus:

$$V_{bc} = -V_{cb}$$
 $V_{ec} = V_{eb} - V_{cb}$
 $c^{z}_{b} = b^{z}_{b} + b^{z}_{m} = 0.503 \text{ megohm}$ $c^{z}_{e} = b^{z}_{e} = 17 \text{ ohms}$
 $c^{z}_{c} = b^{z}_{c} - b^{z}_{m} = 11.5 \text{ K ohms}$ $c^{z}_{m} = b^{z}_{m} = 0.503 \text{ megohm}$

so that the equivalent circuit (61) of Section II is:

The amplification factors and the circuit amplifications for the common-emitter and the common-collector circuits will of course be different from those values computed above for the common-base circuit. The appropriate equations can be used to compute the new values.

If a nodal-derived equivalent circuit is desired, the transformation equations of Section IC must be used. Thus, suppose that the common-emitter one-generator equivalent circuit (4)0 of Section II is desired. There are several different successive transformations that can be employed to arrive at circuit (4)0. The following successive transformation will be employed: (2)0-(1)0-(1)0-(1)0.

Thus, (21)11

$$V_{be} = -V_{eb}$$
 $V_{ce} = V_{cb} - V_{eb}$ $Z_{bbe} = Z_{eeb} = 199 \text{ ohms}$ $Z_{cbe} = Z_{eeb} - Z_{ceb} = -0.503 \times 10^{6} \text{ ohms}$ $Z_{bce} = Z_{eeb} - Z_{ecb} = 17 \text{ ohms}$ $Z_{cce} = Z_{eeb} - Z_{ecb} + Z_{ccb} = 11.5 \text{ K ohms}$

And 10 10
$$\Delta_z = z_{bbe}z_{cce} - z_{bce}z_{cbe} = 10.84 \times 10^e$$

$$y_{bbe} = z_{cce}/\Delta_z = 1.06 \times 10^{-9} \text{ mho}$$

$$y_{bce} = -z_{bce}/\Delta_z = -1.568 \times 10^{-e} \text{ mho}$$

$$y_{cbe} = -z_{cbe}/\Delta_z = 0.0464 \text{ mho}$$

$$y_{cce} = z_{bbe}/\Delta_z = 18.37 \times 10^{-e} \text{ mho}$$

Finally, 1040

$$e^{y}_{be} = y_{bbe} + y_{bce} = 1.059 \times 10^{-8} \text{ mho}$$
 $1/e^{y}_{be} = 944 \text{ ohms}$ $e^{y}_{bc} = -y_{bce} = 1.568 \times 10^{-8} \text{ mho}$ $1/e^{y}_{bc} = 0.638 \text{ megohm}$ $1/e^{y}_{ce} = y_{cce} + y_{bce} = 16.8 \times 10^{-8} \text{ mho}$ $1/e^{y}_{ce} = 59.5 \text{ K ohms}$ $1/e^{y}_{ce} = 59.5 \text{ K ohms}$

so that the equivalent circuit (4N) is:

h. J. Gracoletto

L. J. Giacoletto

References

¹ASA C42-1941, "American Standard Definitions of Electrical Terms", American Institute of Electrical Engineers, 33 West 39th St., N.Y.C., 1941.

²"Standards on Abbreviations, Graphical Symbols, Letter Symbols, and Mathematical Signs", The Institute of Radio Engineers, I East 7.9 St., N.Y.C., 1948.

 $^{^{3}}$ L. C. Peterson, "Equivalent Circuits of Linear Active Four-Terminal Networks", B.S.T.J., Vol. 27, pp. 593-622; October, 1948.

 $^{^4}$ "Standards on Electron Tubes; Definition of Terms, 1950", *Proc. of I.R.E.*, Vol. 38, pp. 426-438; April, 1950.

 $^{^5}$ "Standards on Electron Tubes: Methods of Testing, 1950", $Proc.\ of\ I.R.E.$, Vol. 38, pp. 917-948; August, 1950.

 $^{^{\}rm 6}$ "Standards on Transducers: Definitions of Terms, 1951", Proc.~of~I.R.E. , Vol. 39, pp. 897-899; August 1951.