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INTRODUCTION:

The‘purpose of this report is to describe certain analytical tools which
can be used to good advantage in Cathode Ray Tube Electron Optics problems, These
tools consist primarily of numerical methods and computer techniques, which, of
course, apply equally well to all fields of engineering. Some of these methods
have been applied to a sample electron lens problem, and the mechanics of the
work as well as the results are included in the report. In addition, some logical
extensions of the methods are mentioned,

NUMERICAL METHODS:

Numerical methods of solving the differential equations of physics is
certainly not a new subject. Such methods and the whole theory of the calculus
of finite differences have long been recognized as extremely powerful tools. In
fact, such methods offer the only approach to solving complex boundary value pro-
blems subject to actual boundaries found in physical devices., Of course, this is
the very nature of the Cathode Ray Tube Electron Optics problem, and numerical
methods automatically should find a niche in the analysis of these problems.. Even
though the theory is not new, and the methods have long been recognized as being
extremely powerful, there are several reasons why such methods have not been too
popular in Engineering analysis up to recent times, to say nothing of Cathode Ray
Tube analysis, These reasons are as followss
l. An enormous amount of dull, monotonous labor is involved in applying
numerical techniques to the solution of large practical problems,
2. A so-called "general solution" is not obtained from numerical solutions
and hence the results do not conveniently show the effects of variations

in problem parameters,



3. A feeling that numerical techniques yield inaccurate approximate

results,

The above reasons are probably listed in the order of importance, and if -
it were not for number 1 the remaining two probably would not exist. Number 1
above will be discussed presently; however, a few words about 2 and 3 are probably
in order,

First, a so-called general solution to any problem is very desirable if
obtainable. However, if such solutions are not obtainable, certainly numerical
solutions cannot be frowned upon. This is particularly true in any field where
"eut and try" helped out by analogies is the only practical approach or pro-
cedure of today. Then too, it is important to realize that numerical solutions
can provide all of the information that classical general solutions providey; if
one does not object to the labor involved in cranking through several separate
solutions,

Second, the feeling that numerical techniques yield inaccurate approximate
results is completeiy ill-founded. Such techniques actually allow for any desired
degree of accuracy, limited only by the amount of labor put forth, Numerical
methods likewise allow for the consideration of odd shaped boundaries of finite
dimensions, as well as so-called end effects, Therefore, it is very surprising
that the very people who approximate physical problems by assuming infinite planes,
cylinders etc., and neglect end effects are the ones who condemn the numerical
techniques, In addition, the classical methods very rarely allow for a check on
the errors involved from such assumpitons; whereas numerical methods constantly
allow for error analysis and a direct means of obtaining greater and greater
accuracy.

The above statemenés are not meant as a criticism of classical analysis
but rather are made to clear up erroneous impressions which seem to prevail con-

cerning numerical analysis,



In summary it might be stated that there are no real reasons for shying
away from numerical analysis other than that given in (1) above.
DIGITAL COMPUTERS

USE OF DIGITAL COMPUTERS:

Because of the vast amount of detailed labor which is involved in numerical
methods, some means of mechanically performing thé‘necessary operations is certainly
desireable., The general purpose digital computers available today are quite
readily applicable to this chore., These machines can perform the necessary opera-
tions of addition, subtraction, multiplication and division as well as certain
logical operations. They can perform these functions with tremendous speed and
aocuracy and they are finding widespread use in the solution of engineering pro-
blems in every field. These machines eliminate much of the undesireable labor
when using numerical methods, and are very rapidly becoming the answer to the
numerical analysts problems. Presently, however, using or programming these
machines becomes quite a task in itself. Nevertheless, the total labor involved
is so considerably reduced that the solution of large practical problems has
become feasible with the use of'present day computers,

Also, new computers and new programming techniques are being developed
which continually relieve the programming problem., Hence it appears that the one
real reason for hot utilizing numerical methods has actually been overcome,

SCOPE OF TREATISE:

. Since the field of numerical analysis and the calculus of finite differ-
ences is such a broad subject, no attempt will be made to write a ¢omplete mathe-
matical treatise. Rather, those interested‘should refer to standard textbooks
(8, 16) on the subject. Likewise, no attempt will be made to apply these techniques
to general problems in engineering., Rather, the purpose is to investigate some of
these tools and show how they may be applied to electron optics problems. Needless
to say, with more time, effort, and experience in this field new and better

techniques could be developed.



BOUNDARY VALUE PROBLEMS:

The electrostatic field problem, neglecting any possible space charge,
if the first problem of interest in electron opties. It is basically a boundary
value problem, where by definition, the potential on the boundaries is known,
and it is desired to determine the potential throughout the bounded region. The
method of solution by numerical means (which in general is the same in all numerical
boundary value problems) can be stated as follows:
l. First write the differential equation to be solved,
2. Replace the derivatives or partial derivatives by their finite
difference equivalents. (These éan be derived or simply ex-—
tracted from a table of such equivalents) (Appendix 1)
3. Next set out a number of equally spaced intervals along the various
coordinates between the boundaries,
Le Apply the equation found in (2) to each point in the network of
points established in (3),
5« Solve the set of algebraic equations relating the spaced functional
values to obtain the values of the function at the network points,
bs Fiﬁally the value of the function at other points between the mesh
points can be found by re-applying the equation obtained in (2),
It should be mentioned that by using unequal intervals near the boundary,
a boundary of any arbitrary practical shape can be defined., Where the intervals
are unequal the finite difference formulae are different, but the same principle
holds. (Appendix 2),
The practical problem of solving the set of algebraic equations as in step
(5) is, of course, -the one of interest. One method is to actually set up the system

of simultaneous equations, one for each point and solve by ordinary techniques. This,



of course, is very laborious. The successful and practical method is to use a
system of successive adjustments to initially guessed values. The methods of
"relaxation” or "liquidation of residuals®" as presented by Southwell (1) work
well if the problem is to be solved manually, The method of "iteration", which
converges on a solution more s;owly) seems to be more appropriate for machine
calculations, simply because of the repetitive nature of the process,

If the function being solved for has high order derivatives, several
complexities arise and the simple method outlined above must be elaborated. Need=
less to say, the electrostatic fields encountered in electron topics do have these
high order derivatives or "frills" especially in the region near the electrodes,

First, it may be stated that if the order of the finite difference
approximation used to replace derivatives in the original equation, is greater
than the highest order derivative of the function, then an exact solution is ob-
tained by the above method regardless of spacing or interval size. Therefore,
if high order derivatives exist a very elaborate difference equation must be
solved, This is inconvenient and impractical. If a low order difference equation
is used, extremely close spaced intervals must also be used. (It should be obvious
that even a low order difference approximation becomes exact as the interval
becomes infinitesimally small). If this method is used it is quite difficult to
determine just when the interval spacing is small enough to yield good accuracy.
Of course, one sure way, as proposed by Southwell (1) is to halve the interval
and obtain another solution, Then if little or no difference is found in the
solutions, the desired results have been achieved. This is also an impractical
approach, since many solutions may be required before the given criteria are met,

L. Fox (2) first proposed and J.H., Harries (3) later elaborated upon

methods of using simple finite difference equations even when high order derivatives



occur in the desired function. These methods involve splitting the solution into
partial solutions in one of two ways,

The first method is one of using successively differenced partial
solutions, The first solution is differenced to obtain a remainder or error function
at each point in the mesh., This error function is then relaxed to obtain a second
partial solution etc. The sum of the partial solutions then converges very
rapldly on the exact solution., In this modern form relaxation is now regarded as
capable of giving any desired degree of accuracy (L. Fox h), and relaxation in
three dimensions &ctually becomes practical,

The second method involves using a variation of the interval and ob=-
taining several solutions, and then extrapolating for a more exact solution. The
accuracy obviously depends upon the degree of the extrapolating polynomial. The
real power of the method is realized after proving the symmetry of the situation, and
showing that only two solutions are required to make a fifth order approximation (3).
In addition. to these methods there is wide scope within the framework of numerical
analysis for ingenuity and variation in the handling of different problems, Many
problems can be attacked by straightforward calculation while others may best be
approached by using such artifices as transforms. In any case, once the new
variation has been developed, a simple group of straightforward numerical pro=-
cedures can be set up for engineering computation, These methods in conjunction
'with present day computing devices offer tremendous tools fer analysis,

ELECTROSTATIC FIELDS WITHOUT SPACE CHARGE:

Now turning to the electrostatic field problem itself, and considering a

two dimensional case with no space charge, LaPlace's equation must be satisfied,

1. vl\/:O



For the two dimensional case with coordinates x and y 1. becomess
z
Vo, 28— 0o
— 2 f—
2 X7 oV

Replacing the partial derivatives by corresponding finite difference

equivalents with interval spacing h (Appendix 1)

;. V—x”-\f:—ZVO + V—)’+?2}’—Zl/o = 0

Solving for Vo

AT 10 R TR

which is the familiar expression stating that the potential at each
point in the field is simply the average of the potential of the four surrounding
points. This equation now must be applied to each mesh point in the field which
is surrounded by 4 equally spaced mesh points. A different but very similar

expression of the form
5. \/0:'/4%4 *5%(7‘([[), +DV,),

must be used for points close to the boundaries where non equal inter-
vals are encountered, The method of obtaining the coefficients in equation 5 is
shown in Appendix 2,

For the three dimensional case in rectilinear coordinates x, y and z a

similar expression to (4) can be derived and is

6 V= L (Ve t Vo + VA 4 #1)

For the special case of an axially symmetric field which is extremely
useful in Cathode Ray Tube Lens analysis, we start with LaPlace's equation in

cylindrical coordinates:



OV o, L v, W,
Te Jn? o YT 262 2 2* O

For the axially symmetric case
2
_:_9___1{:0
2
2
Hence from (7)

2V L v Y
9 2/12 + /T ?/L + 92_7_ - O

8e

Replacing the partial derivatives in (9) by finite difference equivalents

VotV =2Vo  h (4 -V, Vi, +lz -2V,
10. i +/—l—_§.4_7"_2+ -z 222 -0

Solving for Vo

. \/o:Z‘L(V-4+Z/‘z”(z”{z>+§%ﬁ(%/‘—y%>

This equation, of course, applies off the axis of symmetry, whereas on

axis when r = 0 the normal three dimensional equation becomes:

e V= (W, Y. t4K)

Hence (11) is used off axis while (12) is used on the axis, and the

potential function in a plane which includes the axis can be calculateds

If equation (11) is compared to equation (4) the difference between the
two dimensional case with no variation in the third dimension can be compared to
the axially symmetric three dimensional case, Hence, the right hand term of (11)
is seen to be the difference or the error correction term. Looking at this term

it is apparent that the correction becomes larger close to the axis, and is also



dependent upon the gradient of the potential perpendicular to the axis., From this
it is relatively easy to see that large errors can occur near the axis when using
2 dimensional approximations such as tele deltos paper or rubber membrane analogies.
Obviously, this error term must be included point by point and cannot be applied
directly to any given 2 dimensional plot. However, it does indicate where errors
might be encountered,

SAMPLE PROBLEM:

A sample electron lens configuration was analyzed by the previous methods to
become familiar with the mechanics of the problem, as well as the computer techniques
which might apply. The lens configuration used is shown below and is similar to a

10UP1LA focus lens,.
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F I G UR E 1.
This lens consists of 3 axially symmetric cylinders as shown. The lens is
symmetrical about the lens center line and also about the tube axis; therefore,
only one quarter of the electrostatic field need be determined. This one quarter

portion of the lens, with two final solutions indicated, is shown in Figure .



The region of solution is divided into a grid of points with 25 mil spacing. Each
point has a numbered position and two values of the potential existing at that
point for two different cases, The upper set of nimbers indicate the results ob-
tained for a two dimensional case when using equation (4). The lower set of
numbers indicate the results obtained for a three dimensional axially symmetric
case when using equations (11) and (12).

IWO DIMENSIONAL CASE:

The two dimensional solution was begun with a mesh or grid spacing twice
as large as the one shown in Figure 2, The solution was relaxed by hand and was
found to be quite inaccurate when differenced as suggested by Harries (3). The
closer spaced mesh was then chosen and the problem was programmed for the IBM 650
computer (12). The program was written using the Bell Laboratory Interpretive
System (BLIS) (11). Initial values for the potential at the various mesh points
were taken from the hand relaxed field plot. The solution was then iterated on
the computer 220 times to obtain the solution shown in Figure 2, The iteration
process was performed in steps of 10 iterations each, and the potential at several
points were plotted vs, the numberof iterations to determine when the process
should be stopped. The pfocess obviously converged very slowly on a solution.

It shoq;d be mentioned that the potential is shown in percent with two decimal
places; however, the calculations were carried out on the machine with a total of
8 digits or 5 decimal places. At the completion of the iteration process, varia-
tions in the 2nd and 3rd decimal place were extremely small for most points in
the field, and the solution was judged to be accurate to better than 1% overall
for this mesh spacing. By differencing this solution it can be determined that
it is not exaet and the greatest error occurs in the vicinity of the sharp point
of the field electrode, A second partial solution indicates that the region of
interest near the tube axis would not be greatly affected, and hence the addi-

tional solution was not run to completion.,

- 10 -
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At this point a few comments about the computer application are in order.

First, the BLIS programming system was chosen Because of the relative
simplicity of using the method, The BLIS system is an interpretive system where-
by rather simple instructions may be given to the machine along with a fixed
interpreting routine. These blocks of information are stored in the machine's
memory along with the data to be processed. The machine process of calculation
then follows the pattern of:

1, Select the appropriate instruction.

2. Interpret the instruction as written and give the machine as

many machine language instructions as necessary to accomplish
the desired result.

3. Select the next instruction,

Any such interpretive system removes some of the burden from the pro-
grammer; however, other disadvantages must be tolerated. The major disadvantages
are:

1. A sacrifice of available storage space for the interpretor. (For

BLIS 1000 of the 2000 word capacity of the 650 Computer)
2. A sacrifioe in calculating speed due to:
as Interpreting tiﬁe each time an instruction is encountered,
be. The non optimum location of information in the memory,

For the problem under discussion, approximately 250 BLIS type instructions
were involved in the program, thereby occupying 250 storage locations. Another
370 locations were used for the 370 points of the grid. Each group of 10 itera-
tions required approximately 20 minutes of computing time, This information is

given so that it may be compared with results in later sections.



THREE DIMENSIONAL CASE:

The three dimensional solution was started by assuming initial values for
the potential at the various mesh points to be those found in the two dimensional
case, The problem was again programmed for the IBM 650 computer; however, this
program was written using the Symbolic Optimal Assembly Program (SOAP) (13).

The iteration process was carried out in a similar manner to that described for
the two dimensional case, and 161 iterations were performed to obtain the
solution shown in Figure 2, Again the potential is shown in percent with two
decimal places; whereas the calculations were actually performed on the machine
with a total of 10 digits or 7 decimal places., The additional two decimal places
used in the three dimensional solution are a result of the programming scheme
and are not due to any requirement in accuracy. Once again the greatest errors
occur in the vicinity of the sharp point of the field electrode; however, no
attempt has been made to further refine the solution.

The SOAP programming s¢heme was chosen for applying the computer to this
case due to the added complexity of the calculations and hence a need for more
computer storage space. (As mentioned, the BLIS system occupies one half the
total available storage locations in the IBM 650 computer). The SOAP program is
basically an assembler or compiler type of program whereby & set of symbolic or
general instructions are rewritten and assembled into an optimized machine
language program, Using the SOAP system involves the following:

1. A group of general instructions are fed into the machine as data.

2. The machine containing the SOAP program computes and operates on

the instructions to locate them optimally in storage for a new

assembled program,

. -



3. The computer delivers at its output the desired optimally coded

program which can be run at any future time,

Any such assembler or compiler system offers the following advantages:

1. The entire storage capacity of the machine is available for the
problem at hand since the assembly program is not in the machine
at the same time the actual problem is run.

2, Extremely fast operating speeds due to:

a., Performing only the required calculations. (No interpreting
is required since it was essentially performed once and
for all in the assemblage process)

be The optimum location of information in the memory when
the final program is run,

The disadvantage of using SOAP is that the original program must be
written in cohsiderable detail. This results in longer programming time, longer
programs, and usually more chance for error and hence more program debugging time.
Such statements cannot be made about assembler or compiler type programs in
general but do apply to SOAP., As machines become larger, more ‘elaborate compilers
such as the Formulae Translation (FORTRAN) (15) scheme are being devised to
alleviate the programming burden. Such schemes are basically combination inter-
pretors and compilers, and allow a so-called higher type language (less detailed)
to be transformed into the lower type (more detailed) language of the machine,
These facts are pertinent to the discussion since tremendous progress is being
made in this field today, and such techniques make numerical analysis a very
appealing ﬁool for the engineer,

For the problem under discussion, approximately 1200 SOAP type instructions

were involved in the initial program, and hence approximately 1200 machine language

- 13 -



instructions were involved in the final optimized program. In addition, there
were again the 370 mesh point values of the field, Each group of 10 iterations
for this case required approximately 8 minutes of computing time. The saving

in time due to optimal programming is obvious, especially when it is realized that
the three dimensional calculations were much more involved than those in the
previous two dimensional case,

CONVERGENCE:

From the two example cases cited, it is seen that a large number of
iterations are required before the solution converges upon its final values. 1In
this respect the hand operation of "relaxation" is much more efficient in con-
verging upon a solution. This is true since the slow convergence may be anti-
cipated, and various values may be over corrected to help speed the process.,
Such techniques, although not impossible, are not economically feasible with
present computer facilities and the slower more tedious method of iteration must
be relied upon. In general, if a solution is started from initially guessed
values the error is large, and then reduces with the number of iterations. A

typical curve is shown in Figure 3a.

FINAL ~ .
CALCULATED = TRUE VALUE
VALUVE

NUMBER oF ITERATIONS

FIGURE 3a

The situation can become worse and a curve as shown in Figure 4a might be

encountered,
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M/MBER ©oF ITERATIONS

FIGURE La

In any event the solution converges asymptotically on the true solution
in physically realizable field problems. The point is that a constant check or
error analysis must be made to insure proper results,

It is apparent from the asymptotic behavior of the error that the iteration
time may be reduced by starting the solution with the best possible initial guess.,
Good initial values may be obtained by partial relaxation, flux plotting, or from
analogies such as the rubber membrane or electrolytic tank etec. Obtaining such
initial values may warrant considerable time and effort depending upon the magnitude
of the problem; however, refining such answers on the digital computer requires
the same programming time, etc. that is necessary to start the solution from zero,
Therefore, good judgement must be exercised when comparing the relative cost of
computer time versus the set up time for the other methods,

ELECTRON TRAJECTORIES IN ELECTROSTATIC FIELD:

Being able to calculate or plot the electrostatic field for any arbitrary
boundary conditions is a large step toward solving many of the electron optics pro=-
blems., However, this step alone is almost useless and the next major step is to
be able to trace electron trajectories through such fields. There are numerous

methods of calculating electron paths, some based on the paraxial equation and
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others being of a graphical nature. These methods have a restricted application
and moreover, there is no convenient way of estimating or controlling the accuracy.
Another method of approach is to integrate the equations of motion;
numerically. Again the computer may be used to perform the actual calculations,
and once a suitable program has been written, anynumber of trajectories may be
found with ease. Such methods have often been criticized as being too long in
application and indeterminate in accuracy; however L,S. Goddard (6) was one of
the first to dispel this erroneous notion. Basically the method proposed by
Goddard is a step by steﬁ method of progressing along the trajectory as is true
of all such techniques. However, a considerable portion of the past history of
the path is utilized in obtaining the next point or position, and hence the
accuracy is increased., In addition, the energy equation can be used as a check
and offers a ready means of estimating and controlling the accuracy.
The above method was used in tracing electron paths through the field
of the sample problem, and the energy equation check was found to be satisfied
over the entire path. A simpler integrating scheme was then used and negligible
differences were found between the two methods for the particular field given.,
Therefore, in the final computer program the simpler integration scheme was used,
It should be mentioned that using either method of calculating trajectories,
proper convergence of the rays could not be obtained for the two dimensional field,
This discrepancy betwéen calculated results and fact led to the three dimensional
field solution where apparently good results have been obtained,

METHOD OF SOLUTION:

Starting with Newton's Law
13, F =ma



For the purely electric field
u., [ =-ek
Considering trajectories in an axial plane equation (14) may be broken

into components along the x and y coordinates. Then from (13) and (14)

154 m Z//;XZ = “@f)(
and
16, m f//—;L,_ = =& f),

But since

- _20
EX =
17.
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equations 15 and 16 become
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18, /m% = €5y
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Equations 18 and 19 do not involve the first order derivativespﬁfx '
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have been devised which take advantage of this fact,

and for purposes of numerical integration several special methods

One of thesemethodsthe so-called Fox Noumerov (8) integration formula,.is
. W'L o0 99 e
= - + — +
0. X , =2X, Koer * 73 Z;(”‘" +/0X, + X,

where (W = f£+/ - Zc‘ which is the integrating time increment

and may be made as small as desired for accuracy.
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Of course, a similar expression for the Y direction integration may be
written. With the aid of the two equations in the two d;rections a step by step
integration of the path is possible., These are the equations used in the final
trajectory program in the sample problem,

In equation 20 it is seen that only two points of the known path are used

to determine the next point,

Other formulae due to W.E. Milne (7) and advocated by Goddard (6) ares
: Wq' .9 v P
21. XM+I = XM +XM-Z—XM-3 + Z(JXM +'2X/14—; +J‘XM*Z)

which is exact if fourth differences of x are negligible, and

Mm

20 X, = X A Xy Koo +ﬁz/;74i,—&ﬁ,, 122X, 5K,y 14K _)

which is exact if sixth differences of x are negligible,
As stated previously equation 20 is the one actually used, hence it is
the only one that will be followed in the report,

From equation 18

AX _ 0 _ e v
B g TX T gy

Substituting (23) into (20)

=2X - Wk |2V p1020] + 22)
S /Y/MH ZX’“ mer 7 7[?X m-/+ ;Xm X ml

Where K is the appropriate cbnstant considering e/m and the units used,
The values in the brackets of equation 24 may, of course, be obtained by
differencing the field solution previously calculated, Therefore, by taking any

two successive points on an actual, assumed, or otherwise determined path as initial
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conditions, and having the various differences of the field solution in both
the x and y directions; the desired trajectory can be obtained in a step by step
fashion,

Two practical problems are encountered in the method and should be
mentioned,

First, the field gradients as obtained by differencing the field solution
are only known for the specific mesh points, The equations of motion of the
electron are integrated with respect to time, and regardless of the integrating
tine interval, one cannot be assured that the path points will fall on these
mesh positions, This then presents the problem of interpolating for the field
gradients at points between the known values of the mesh, Numerous interpola-
tion schemes can be formulated, however, the one adopted for the sample problem
is as follows:

A, First the point being considered was found to lie between /4 mesh

points where the gradient is knowm,

Be Next the mesh point closest to the considered point was determined,

Ce The mesh point found in (B) was used as a base and straight line

interpolation between this point and the two adjacent mesh points
were used in the two directions,

In essence a plane is passed through the closest corner and the two
adjacent corners of the square mesh, and the gradients at the desired point are
determined from this plane,

The second problem can be seen from equation (24). Here it is evident
that the point Xn + 1 is being sought, yet the field gradient at this point
must be known beforehand. This, of course, is impossible but a good approximation

for the field gradient at this point may be obtained by simple extrapolation of the
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of the previous x and y increments for the previous time increment. Using this
predicted value of field gradient the point Xn + 1 may be calculated., If necessary
a better approximation for the field gradient from this point may be substituted
into equation 24 and a new calculation made., Such successive approxﬁnations, of
course, converge on a solution. Fortunately, this repetitious process need not
be performed if the increments are small enough.

Perhaps one of the best ways of presenting a clear picture of the logical
calculations is by means of an abbreviated block diagram for the flow of informa-
tion through the computer., Such a diagram is shown in Figure 3,

COMPUTER APPLICATION:

For the problem under consideration an electron trajectory program was
written for the IBM 650 computer using SOAP, Approximately 1350 instructions
and constants were used in the program, and approximately 45 seconds of computer
time are required to trace a complete trajectory through the given lens, Such
a trajectory consists of the x and y coordinates of approximately 66 points in
the lens region,

The program as written is a more or less universal type program in that
electron trajectories can be traced through any known field subject to the following
conditions:

A, The field region and also the electron paths are confined to a

square mesh pattern 65 units long and 10 units wide,

B. The field or field gradients are such that the simple interpolation

methods used actually apply in the mesh intervals,

Ce Obviously the appropriate constants taking care of units, apd the

appropriate field gradients must be supplied to the program,
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It should be emphasized that the above conditions do not severely restrict
the use of the program. This is true since any field may be divided by a
sufficiently fine mesh to satisfy condition "B", Then condition "A" may be met
by dividing the problem into sections. Thus the trajectory may be obtained in
one section and provide initial conditions for extending the path into the next
section, etc.

Even though other computer programs can be written and there is very
little reason for delving into any specific program, it might be wise to explain
the reason for the specific mesh pattern handled in this program. A more or less
novel coding scheme has been used and it should serve to illustrate some of the
many tricks possible when applying digital computers to practical problems,

Some of the pertinent facts of the problem are as follows:

l. An "X" direction gradient and a "Y" direction gradient for each

point in the mesh must be available for the calculations,.

2, The IBM 650 basic computer has 2000 available storage locations
where information may be placed and located. These 2000 locations
are addressable by 2000, 4 digit code numbers in the range 0000=-
1999.

3+ The mesh point for which the gradients must be known at any given
time is easily calculated from the existing point in the path,
However, the gradients themselves must be determined for that
mesh point,

Hence a "Table Look Up Function" is indicated.

4o The path to be calculated extends farther in the x direction than
in the y direction.

Because of these facts, the address or position in storage of the various

gradients were selected and coded so that they might be located directly from the
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coordinates of the mesh points. The first digit was assigned a zero or a one,
depending whether the gradient was an "x" or "y" type. The next two digits were
allocated to the x coordinate, and the last digit was used for the y coordinate,
Therefore, the y coordinate is limited to the 10 positions 0=9 and the x co=-
ordinate is unavoidably limited to the 100 positions 00-99. Since the sample
problem field did not require 100 increments in the x direction, and since storage
space is required for the program instructions themselves, the x values were
limited to 65 positions 00-64.
By using this scheme it became a simple matter to generate the required
coded address of the desired gradients,
For example the x direction gradient for the mesh point having coordinates
x = 16 y = 3
would be located in storage position
0163
whereas the y direction gradient for the same point would be located

in position 1163

Having formulated the exact locations of the various gradients in this
program, it is, of course, quite simple to set up another program for differencing
the original field solution. Such a program then yields output cards which act as
input cards for the trajectory program. Hence, the entire solution may be per—
formed on the machine. This has been done with the sample problem and basiqally
three programs are involved., The first program iterates the field solution. The
second program differences the field solution or calculates the gradients, and also
assigns each gradient a coded position for the trajectory calculations. The third
program plus the output from the second program then may be used to calculate any

desired electron trajectory.
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RESULTS OF THE SAMPLE PROBLEMs

Numerous electron trajectories have been calculated for the given lens con~-
figuration, and apparently satisfactory focusing action has been obtained. Such
trajectory plqts in themselves are only of pictorial interest and are not shown
in the report. Some of the results of such calculations are of interest and are
given in the following.

1. First, parallel rays (parallel to the tube axis) were introduced in the
field to determine the apparent focal length of the lens, and also to
determine how this focal length varies with lens diameter. In addition,
a variation in focus lens voltage was introduced to determine its
effects on focal length., A graph showing the results may be seen in
Figure L.

It should be mentioned that the electrons were considered to be in a field
free region at the output of the lens field, and straight line extrapolation of
the paths was used,

The calculated results show rather marked steps as the path radius is varied,
These steps occur at approximately % the field mesh spacing and are a result of
the interpolation methods used,

One additional item that became evident during the calculations, which is
not apparent from Figure 4, is that the curves become flatter as the lens becomes
weaker. In other words, the focal length remains more constant with radius for~
the longer focal length lens. This, of course, agrees with intuitive reasoning,

2. Next, rays emanating from a point source on the tube axis were introduced
into the field to observe the focusing action. The problem which immediately arose
was where should the fictitious source point be placed. By assumption a point

was picked and the results are shown in Figure 5. 10KV was assumed on the field
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electrode and O volts on the focus cylinder, At a later time experimental measure-
ments on a tube having a somewhat similar focus lens showed that the point source
actually should be moved farther back., Another group of trajeqtories were run
using the above voltages and the results are shown in Figure 6.

At atill a later date, extrapolation of experimental results indicated that
the analyzed lens should focus with approximately +1100 volts on the focus cylinder.
A group of trajectories were run using 1000 volts on the focus cylinder and the
results are shown in Figure 7.

In an attempt to gain even more correlation between the results and ex-
periment, a lens having the same dimensions as the mathematical model is presently
under construction,

The most that can be said at this time is that the results look extremely
encouraging, The analysis was originally undertaken to learn the mechanics
of some of the tools and the results are certainly not intended as design data,

The results of applying the tools have been extremely enlighteneing, and many more
elaborate methods now appear feasible, Furthermore, the application of such
techniques appear feasible from a practical, economical standpoint, as well as

from the theoretical, Some of the possible extensions of the methods are discussed
in the following sections,

ELECTROSTATIC FIELDS WITH SPACE CHARGE:

The next problem of interest is the one where space charge is considered,
This problem can again be handled by using numerical techniques. The problem
becomes a bit more involved; however, once again, after the programming is com—
plete the computations may be carried out automatically. The following outlines

the proposed scheme,
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When space charge is considered the potential no longer satisfies LaPlace's

equation; but must satisfy Poisson's equation

; _ CouLoMbs
: £ = L x5 Sarrts
T 3¢ MeTef
Current corresponds to a motion of charges and current density can
be written as S
. = ETERS,
WHERE: v = MRS,

264 _ oV
J f Tz A en®

or charge density is

270 F = T},\j—‘

but from the energy relation
2
28, Z/-MV:GV
And the charge velocity v becomes

0. v =25V

Substituting (29) into (27)

F
30. (? -l x/zgggfl;f-

Substituting (30) into (25)

g V7zv/ = -—-E_gzg% L/

Now both J and V are in general functions of the coordinates. Hence dJ

-L
Z

must be known throughout the field if equation (31) is to be solved for the

potential,
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If we now hypothesize the type problem of interest, we can outline a method
of solution. The method involves obtaining a series of numerical approximations.
PROBLEM:
Given: (or assumed)
1. Boundaries of field region
2, The input "J" at the boundary
(The problem basically is to bring electrons into an electrostatic field
and trace their trajectories through the field, considering both the effects of
the boundaries and space charge. Hence, it is obvious that an initial current
density of the beam of electrons at the entrance to the field is required.)

METHOD OF SOLUTION:

1l. Calculate the space charge free electrostatic field for the given
boundary conditions - From LaPlace's equation, or from equation 31
ifJd =20

2, From the given initial conditions of the distribution of the electron
beam, calculate electron trajectories through the field by integrating
the equations of motion,

3. From the éalculated electron trajectories calculate the current
density J over the entire field region.

Lo Using this approximation for "J" recalculate the field from equation (7)
Return to Step 2 and repeat steps 2, 3, 4 until no further change in
the field or trajectories is encountered (A change will always occur

actually - however, the subsequent approximations will converge upon
a true solution and the process may be stopped whenever the change

is deemed negligible.)



It should be recognized that Poissons equation rather than LaPlace's equation
should be programmed from the very start, In this manner the same computer pro-
gram may be used over and over again on subsequent field solutions. The only
additional program required is one which allows for the evaluation of the current
density J throughout the region.

MACHINE METHODS OF SOLVING GENERAL FIELD PROBLEMj:

As previously stated a more or less general electron trajectory program may
be written. Hence, as new and different problems are encountered, only slight
modifications in the existing program are required to apply it to the new
situation. The same appears to be true of gradient calculating programs and
current density evaluating programs. Also it is worth noting that more generalized
programs are possible on larger computers with more storage space (IBM 704, etc,)

The major existing problem in applying these numerical methods to general
field configurations is the programming of the original boundary value field pro-
blem, For each new geometrical configuration involved, a new field calculating
program must be written.

To alleviate this programming burden it appears worthwhile to attempt a more
sophisticated approach to the general field problem,

GENERAL FIELD PROBLEM:

There are three ways of attacking the generalized field problem from the
computer programmers standpoint. They are as follows:
l. Program an assembler or compiler
2, Program an interpreter

3. Program a generalized field problem directly



An assembler or compiler program is one which may be used with a high
level language program - - - — and when both are run throggh the computer a new
program in basic machine language is assembled or compiled. The new program can
then be run through the computer to solve the given problem. The high level
language program must be written for each problem encountered; however, its
higher level allows for a simpler less detailed program to be written than is
the case in computer language,

An interpreter program is one which may be used wﬁth a high level language
program - - - and when both are run through the computer a solution is obtained,
Hence, an interpreter differs from a compiler in that no new program is written
for an additional run through the computer, The interpreter must be used each
time a solution is required; therefore, it is much less efficient than a compiler
especially if the problem is iterated many times, In other words, the interpreter
is in the machine at the same time the problem is run, hence, occupies storage
space; and in addition must interpret each high level instruction every time that
it is encountered. The compiler interprets the high level instructions once, and
compiles an efficient program for later use when the compiler need not be in the
machine, Needless to say, the compiler is the more preferable; however, also is
the more difficult to program,

The third approach is to program a generalized field problem directly which
might be altered for each solution by some initializing procedure, This is an ex~
cellent method if the range or class of problems is somewhat restricted, (If
boundary shapes, etc. do not change over too wide a range) The more and more
generalized the program is to be, the more difficulty is encountered in designing
it. In the generalized program the initialization must be written or supplied for

each new problem requiring solution,



It is quite difficult to determine which of the foregoing three approaches
is most practical. The first method to be studied in more detail will be the
direct programming of the generalized field problem. It appears that this approach
might lead to more insight to the problem, and also might be the most satisfactory
due to the restricted class of problems involved in the Cathode Ray Tube
Department.

KRONS METHOD (DIAKOPTICS)

The type of problems being coﬁsidered here can, of course, become immense
in magnitude, and it is not too difficult to visualize problems of such a size
as to be several steps ahead of present day computers, This brings us to another
powerful tool developed by Gabriel Kron. The tool or method called Diakoptics is
essentially one of tearing large complex and interconnected systems into
simpler pieces for analysis. These smaller parts can be solved on existing com=-
puters, The solution for the complete problem may then be obtained by interconnect-—
ing the solutions of the smaller subdivisions, An added advantage is realizable
since if alterations are made in any of the sub-parts, only these parts are re-
calculated and then interconnected with the existing solutions for the remaining
parts,

The technique of tearing leads to a system of filing solutions as they are
acquired, Then on some future occasion, several of the solved systems on file
can be interconnected to form solutions for new systems., In this way the library
of solutions pyramids and becomes more and more useful, Also, unnecessary time
need not be spent in resolving previously solved portions of new problems,

For the Cathode Ray Tube problems of interest, solutions for straight
cylinders may be obtained as well as for various flares and terminating curls.
Then these solutions may be combined in any manner, at will, to obtain solutions

for new configurations,



Kron's method is truly a powerful engineering tool; however, it should
not be beiieved that as soon as the question of piecewise solution of problems
is raised, one can proceed and immediately accomplish the task. The method in-
volves much laborious work and certainly would entail many soltuions similar to
the one described in this report. However, the simple fact remains, the method
is available,

Kron's method utilizes the theory of tensors, topological models in the
form of electrical circuits, and the tearing apart of such circuits physically or
functionally. The use of topological models or equivalent circuits as opposed to
the direct use of difference equations allows for the physical tearing of the
problem, and subsequently to the formulation of an interconnection scheme., The
mechanics of solving the various sub-divisions of the problem are similar to
those involved in this report,

These methods have not been completely explored, and definitely a con=-
siderable amount of "learning time" would be involved in attempting to apply the
techniques to Cathode Ray Tube Problems. Nevertheless, this tool of Diakoptics
offers tremendous possibilities,

CONCLUSIONS:

From most of the foregoing it should be evident that the electron optics
problems associated with Cathode Ray Tubes are quite complex. The more or less
laborious and brute force methods of numerical analysis offer a direct approach to
analyzing these problems, Computers and computer techniques offer methods of
automatically performing a large portion of the laborious calculations, and make
the application of numerical techniques to such problems entirely feasible, Addi-

tional methods, such as Kron's method of tearing, allow for rapid accumulation of

~ 30 =



solutions and should allow the analytical tools to become forerunners to methods

of synthesis and design.
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APPENDIX I

Finite Difference Equivalents:

For the uninitiated, a brief description of finite difference equations and
their derivation is included in this appendix., This material was extracted from
a report by J. H. Owen Harries (3) and is originally due to Shaw (5).

Setting up difference equations:

In Figure 1 let the curve shown
by the graph of some function,
47 = OQCX) At some point x = xe,

we have be definition for the

6;_;(;(_?1_’7 A point e of Figure 1.
FIGURE 1
<0/¢ _ Z//V/ ﬁé(e _/—’?—) - w(’\/e *ﬁz—)
3, AX h-»0 A

= LM WQ*@
h—vo 4 /
where by (Zﬁ%%y,lg is meant the value of ;Zifz at the point x=e etec,

Consequently, when h is small, we may write for equation 1l:

. () = 52

and similarly

4.4
. @)~ L2

Also since

he W’W/LX
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follows th)at N (/w) (a/%)/

By introducing values from equations 2 and 3 one obtainss

(M) o ¢7+6{-2%
ch‘cﬂa 24

In equation 6, the expression

z
difference approximation for: (;/—\,‘g )é

Check by Taylor's Series:

5

6

is the finite

Alternatively, on the assumption that locally the function W may, be

expanded in the form of a Taylor's series, we may write:
Z 3 4
W)X = A, + AX + XX 1A X+ a,x + - - --

with x = xb as origin we then obtain

4,

a, *(4%),
2/ 8y = Z%e
3/ 4 = %)é

and substituting (Xc'Xé):A 3 (Xa X, ) =) efe, and solving for a,

ﬂ) <ﬂ+¢7 bbb {// I

8. 2!/4, =(y

we obtain

so that the finite difference appro:dmation for A %,VZ as given by
A

equation 6 neglects the terms

The Taylor series expansion method may always be used to determine finite

difference approximations and the errors involved in such approximations,
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Difference Equivalents:

Consider now the function <Z7 = ?ékky’as a function of two independent
variables, If, on the x, y plane, a mesh of lines be drawn parallel to the x
and y axes, and spaced a distance h apart, as in Figure 2, then in the manner just

outlined the following approximations are obtained,

LA
51
y 2] o 4
6| 3] 7
p—
FIGURE 2

when points 2 and 4 are 2h apart
9!2) ~ 4% ”<¢Z
o 24

oX
( ~ b-&

9e

L

From equatlon 6 the 2 dimensional LaPlacian is

chﬂ 2 ¢7 ~ (?2 i ¢2 # 4?; f‘é@} - €Z§ZZ
XTIV, T h?

In a similar manner any differential equation or partial differential

equation may be approximated by finite difference equivalents.
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APPENDIX I

Unequal intervals in finite difference equations:

The material in Appendix II has been extracted from a report by J. He.

Owen Harries (3) and is originally due to Shaw (5).

Curved Boundaries:

Y A /

rﬁiﬂ In many of the boundary value pro-
rg//gr———_4 y h blems encountered in practice the
h boundaries are curved, so that adjacent

(

\\___.__J/J

in Appendix I is incorrect., Let

\[\
3 :
to the boundary the treament as given

rk41’4 Figure I represent one such problem,
FIGURE I

Correcting the Equations:

On ‘covering the region with a square mesh, points like that marked 0 occur,

that is, points in which one or more of the associated arms 0l, 02, 03, or O4, is

less than the standard length h. For such points it becomes necessary to develop

special equations,

Consider the polynomial

2 2
L PG axtay+a X +a,y + AKXy

Thus, at the point O (x = 0, y = 0) we have

(27 . '(M“d
Re <f;)xz.0 - 26?3 ) 2V, =2 4

Then referring to Figure 1, substituting the irregular arms hl and h2 and
solving for Lz and 674 we find that

: KO -B) + 4 (F-F)
3 %«gja'i YTV

and



(;1¢ B A(ﬁ %) 7‘4 (¢ %)
e 20 hb, (/)7‘42)

S0 that (VZ%) may be written as
e /7 (i7 %9 04(7+05) 40 6?{%;5 ¢g f"‘zé_“ 4%;

oLy (1#,)
— (% 42
+(/'ﬁc‘z) ﬁ ("‘/ 7‘%)%
where &, = % ), = 6% Hence for O £ o« </

6. AZ(VV)O: A% +5% + C% fﬂ/é —(Eﬁf)%

Where the values for A - - - F may be calculated and tabulated once and

for all. Such a table may be found in Reference 5.
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