The RCA Ultronicon™
An Improved Vidicon Camera Tube for General Closed-Circuit Television Applications

by C.D. Newcomer

The RCA Ultronicon is the most sensitive vidicon camera tube available today for general closed-circuit television (CCTV) applications. It achieves nearly 100-percent quantum efficiency in the visible spectrum with a broad spectral response extending from the near ultraviolet (UV), through the visible, and well into the near infrared (IR). In addition, the Ultronicon has new anti-reflective features that very effectively reduce the spurious effects resulting from intense specular highlights within a television scene.

The Ultronicon combines new and important performance features with the excellent performance characteristics previously established by RCA silicon-target vidicons:

- High sensitivity
- No after-image effects
- No image burn-in
- Low lag
- High resolution
- Excellent blooming control
- Broad spectral response
- Minimal comet-tailing
- Excellent signal-discharge capabilities
- Low dark current
- Adaptability to special applications

While all of the various vidicons utilize the dual functions of photoelectric conversion and field storage to generate the CCTV video signal, both of these functions are achieved in the Ultronicon target in a very different way, and it is this difference in the image-to-signal conversion that produces the Ultronicon’s unique performance characteristics.

THE ULTRICON TARGET

Construction Features
The Ultronicon target is a rectilinear array of silicon diodes having a density of 74 diodes per millimeter in each dimension. (In the standard one-inch vidicon format of 3/8 by 1/2 inch, there are more than 664,000 diodes in the matrix.) The diodes are formed on a wafer of single-crystal silicon by processes familiar in the manufacture of integrated circuits and similar solid-state devices, as follows:

1. The silicon wafer is polished and cleaned.
2. An oxide layer is then formed on one surface of the wafer.
3. Using photolithographic methods, the oxide layer is perforated in a precise hole pattern. The holes are small, just a few micrometers in diameter; each hole is the site of a diode.
4. A p-type dopant is introduced through the holes and into the silicon substrate.
5. Again using photolithographic methods, conductive beam landing pads are formed over the remaining oxide coating in precise registry around each diode site. These conductive pads prevent the scanning electron beam from landing outside the diode sites and, therefore, prevent the surface around the diodes from becoming charged by the electron beam.
6. Additional proprietary processing in the n-type substrate of the silicon wafer results in the near-quantum yield of the Ultronicon.

The manufacture of the silicon target involves a series of complex and precise procedures that account for the unique performance advantages of the Ultronicon. Because the diodes are small, and because of the landing-pad feature, dark current is low. For these same reasons, the target capacitance and, therefore, image-lag, is also low. Resolution is excellent because there is no lateral leakage of the image charge pattern. And the target has excellent signal-discharge capability.

Target Operation
The target is made to operate in the reverse-biased mode by the positive target potential applied to the front (n-type) surface of the wafer and the more negative potential developed at the rear (p-type) diode matrix surface by the scanning electron beam. Reverse-biased operation results in a depletion region extending from the diode junction into the silicon substrate.

A scene illuminating the front surface of the wafer will generate electron-hole pairs within the silicon substrate proportional to intrascene brightness variations. The minority-carrier holes are swept toward the diodes (the electrons toward the front surface) by the potential field through the wafer. The holes move into the nearest diode site and discharge the established bias in quantum. When the scanning electron beam again restores each diode charge, a signal voltage is developed across the target-circuit load resistor in the camera system.

Performance
The important performance characteristics of various vidicons used in CCTV are compared in the following photographs and graphs. Where applicable, these comparisons were made with the tubes installed in an RCA TC1005 CCTV camera at equivalent operating conditions. The comparisons typify the performance of the 4532/U, a popular one-inch (25-mm) tube (refer to the product bulletin on the RCA Ultronicons for detailed operating conditions and performance specifications*). Most, but not all, comparisons apply to two-thirds-inch (18-mm) tubes as well.
Fig. 1(a) – Conversion characteristics.

Fig. 1(c) – Sensitivity
A split-screen-monitor comparison of the sensitivity of the Ultricon (left side) and the Newvicon (right side). The test pattern was back-side illuminated by a tungsten lamp. The photograph illustrates the data of Figs. 1(a) and 1(b) for the Newvicon and Ultricon.

Fig. 2(a) – Resolution
The amplitude response to alternate and uniform black-and-white lines at specified spatial frequencies (1” tubes only).

Fig. 2(b) – Resolution
A split-screen-monitor comparison of the resolution capabilities of the Ultricon (left side) and the Newvicon (right side). The lens apertures were adjusted to produce a typical peak signal current of 200 nanoamperes. This photograph illustrates the data of Fig. 2(a) (1” tubes only).
Fig. 3(a) – Image lag.

Fig. 3(b) – Comet Tailing
The monitors illustrate the comet-tailing characteristics (the long-term retention of specular highlights) of the Ultricon (left side) and the Newvicon (right side). Typical tubes were exposed to a background illumination simulating night-time conditions (camera system AGC activated). The specular highlights produced peak signal levels just three times the normal operating signal level of 200 nanoamperes.

Fig. 4 – After-image
The monitor displays illustrate the after-image characteristics of the Ultricon (left side) and the Newvicon (right side). Typical tubes were exposed to produce 200 nanoamperes of peak signal current for a period of one hour. The camera lenses were then capped. (The camera-system's AGC circuit produced 10x gain.) The photograph was made ten minutes after capping.

Fig. 5 – Image Burn-in
The monitors illustrate the image burn-in characteristics of the Ultricon (left side) and the Newvicon (right side). For this comparison, typical tubes were equally exposed to an incandescent reading lamp for a period of five hours. The lamp was then turned off while camera operation continued. The photograph was made twenty-four hours later. The cameras operated at standard gain; AGC was turned off.
Fig. 6(a) – Blooming at specified overexposures.

Fig. 6(b) – Blooming
An image of an intense specular highlight within a television scene will "bloom" larger than its true dimension as a function of its brightness. Here, the blooming characteristics of the Ultron (left side) and the Newvicon (right side) are compared with specular highlights twenty-five times the normal operating peak-signal level. This photograph illustrates the data of Fig. 6(a) for the Newvicon and Ultron.

Fig. 7 – Reflection of Highlights
The monitors illustrate the spurious images that result from the reflections of intense specular highlights within a scene. The Ultron (left side) effectively attenuates these effects. The Newvicon image is displayed on the right side.

Fig. 8 – "Dark Scene" Surveillance
The split-screen-monitor display demonstrates the "dark scene" surveillance capabilities of the Ultron (left side) and the Newvicon (right side). The scene was illuminated by tungsten lamps filtered to exclude the visible spectrum. The lens aperture (f/stop) was the same for both cameras.

SET-UP AND OPERATING PROCEDURES

The various vidicons made for general CCTV application can usually be used interchangeably in camera systems. The cameras provide common operating conditions and the set-up procedures are standard. The requirements for the Ultron are essentially equivalent to those applicable to the Newvicon, Chalnicon, Plumbicon, and the various silicon-target vidicons. These tubes are operated at a fixed target voltage and use an auto-iris lens to maintain video signal level for changing scene illumination. Additionally, because these types have linear conversion characteristics (unity gamma), compensation is usually provided for in the camera system to complement the non-linear drive characteristics of the monitor picture tube.

A review of standard set-up procedure follows. Refer to the RCA bulletin on the Ultroncs and the service manual for your camera system for detailed operating conditions and performance specifications.
<table>
<thead>
<tr>
<th>Step</th>
<th>Adjustment</th>
<th>Procedure</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Target Voltage</td>
<td>The Ultricon is operated at a fixed positive target voltage of 8 to 10 volts. Note: Target voltage is the potential difference between the target and the cathode. Since the cathode is not at ground potential in many of the camera systems, and because the vidicon beam-blanking pulses are often applied to the cathode, the measurement of target voltage is made using an oscilloscope, and is referenced to the “unblanked” (beam-on) interval of the blanking waveform.</td>
<td>To establish the proper target voltage for the Ultricon.</td>
</tr>
<tr>
<td>2</td>
<td>Set-up (preliminary)</td>
<td>With the vidicon exposed to a suitable test pattern, bring up the vidicon beam to produce picture information. Now proceed to adjust beam alignment, optical focus, and beam focus to produce a reasonably good picture. Adjust the input illumination to produce typical picture signal level.</td>
<td>To establish preliminary set-up and operation.</td>
</tr>
<tr>
<td>3</td>
<td>Beam Alignment</td>
<td>Adjust the beam-alignment controls to the point where the picture does not exhibit lateral movement but rotates about the center point as the beam focus control is turned back-and-forth through best focus.</td>
<td>To align the vidicon beam precisely coaxial with the beam-forming and focusing electrodes of the tube to establish best beam qualities.</td>
</tr>
<tr>
<td>3.1</td>
<td>Beam Alignment (Alternate Procedure)</td>
<td>Illuminate the vidicon to obtain a “token” picture at very low target voltage. Now adjust the beam alignment controls to produce the greatest signal level consistent with the best signal uniformity. Caution: Never misalign a vidicon beam to achieve better signal uniformity to compensate for non-uniform input illumination.</td>
<td>This alternate beam-alignment procedure will also produce good results.</td>
</tr>
<tr>
<td>4</td>
<td>Beam Focus</td>
<td>Adjust the beam-focus control to produce the highest and most uniform resolution. For example, do not peak the resolution in the vertical wedge of the test pattern to the point where it results in a loss of resolution in the horizontal wedge.</td>
<td>To obtain the highest and most uniform resolution.</td>
</tr>
<tr>
<td>5</td>
<td>Image and Scan Format and Scan Linearity</td>
<td>Using a suitable test pattern: a. Make the necessary optical system adjustments to center the image format on the vidicon target. b. Adjust the vidicon scan size and centering controls to make the scan format coincident with the image format. Using an electronic test-pattern generator, adjust the vidicon scan-linearity controls to make the test-pattern image coincident with the electronic test signal on the picture monitor.</td>
<td>To establish proper image and scan formats on the vidicon target.</td>
</tr>
</tbody>
</table>

Notes:
1. An adjustment of the linearity controls will usually require the readjustment of the size and centering controls.
2. An error in scan linearity will produce a corresponding error in signal uniformity.
Step | Adjustment | Procedure | Function |
-----|---------------------|---|--|
6 | Beam Setting, Final | Set the vidicon beam to discharge a signal level twice the normal | To establish a beam setting with an adequate reserve capability. |
 | | operating-signal level. | A final beam alignment is advisable following the preceding set-up steps. |
7 | Beam Alignment, | Repeat step 3 or 3.1. | A final beam focusing is advisable following the preceding set-up steps. |
 | Final | | |
8 | Beam Focus, Final | Repeat step 4. | |
9 | Gamma Compensation | **Comment:** The picture monitor must display brightness variations | To achieve the best reproduction of intrascene variations in contrast. |
 | | proportional to those variations within the original “scene.” To achieve | |
 | | this fidelity, the video amplifier in the television camera has a control| |
 | | (gamma) that permits the adjustment of video-signal gain linearity to | |
 | | compensate for the non-linear transfer characteristics of the picture | |
 | | tube. Compensation is most conveniently achieved by the use of a test | |
 | | pattern having linear steps of gray scale: with the test pattern in | |
 | | place, adjust the exposure to produce a typical video-signal level. Now | |
 | | adjust the gamma compensation control to achieve the best definition | |
 | | of gray scale on the picture monitor. | |

Additional Operating Considerations
The excellent IR sensitivity of the Ultricon allows for unique industrial and surveillance applications. In more general CCTV application, the IR response can substantially extend the low-light-level capabilities of a camera system. However, IR is absorbed or reflected differently (depending on materials) from illumination within the visible spectrum, and it is sometimes important (or desirable) to reproduce intrascene contrast values as they are seen by the eye. The spectral response of the Ultricon is conveniently matched to visual perception by the use of an IR blocking filter. Either the Schott-Jenaer KG3 or the Fish Schurman HA11 may be used; both are available to fit standard lens-filter adapters.

SELECTION AND INTERCHANGEABILITY GUIDE
Table I, the selection guide, and Table II, the interchangeability guide, provide a convenient cross-reference for the popular high-sensitivity heterojunction and silicon-target vidicon types. Refer to the RCA Imaging Devices Catalog for more complete interchangeability and selection information.

Table I — Selection Guide

<table>
<thead>
<tr>
<th>Type</th>
<th>Dimensions and Outlines</th>
<th>JEDEC Base Designation</th>
<th>Heater Current/Power</th>
<th>Max. Image Diagonal</th>
<th>Focus Method</th>
<th>Deflection Method</th>
<th>Typical Operation (2856 K Source)</th>
<th>Sensitivity</th>
<th>Detail Response (4x3 Aspect)</th>
<th>Limiting Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Approx. Dia. (A)</td>
<td>Max. Overall Length (B)</td>
<td>Max. Clearance Dia. (C)</td>
<td>A/W</td>
<td>mm/in</td>
<td>nA</td>
<td>V</td>
<td>TV-Lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mm/in</td>
<td>mm/in</td>
<td>mm/in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two-Thirds Inch (18 mm)</td>
<td></td>
</tr>
<tr>
<td>4833/U</td>
<td>18/0.7</td>
<td>107.4/4.23</td>
<td>19.8/0.78</td>
<td>E7-91</td>
<td>0.1/0.6</td>
<td>11.0/0.43</td>
<td>M</td>
<td>M</td>
<td>345 @ 0.1</td>
<td>480</td>
</tr>
<tr>
<td>4833A/U</td>
<td>107.4/4.23</td>
<td>19.8/0.78</td>
<td>E7-91</td>
<td>0.1/0.6</td>
<td>11.0/0.43</td>
<td>M</td>
<td>M</td>
<td>345 @ 0.1</td>
<td>480</td>
<td>60**</td>
</tr>
<tr>
<td>4875/U</td>
<td>103.1/4.06</td>
<td>19.8/0.78</td>
<td>E7-91</td>
<td>0.1/0.6</td>
<td>11.0/0.43</td>
<td>E</td>
<td>M</td>
<td>345 @ 0.1</td>
<td>480</td>
<td>50**</td>
</tr>
<tr>
<td>One-inch (25 mm)</td>
<td></td>
</tr>
<tr>
<td>4532/U</td>
<td>25/1.0</td>
<td>162.0/6.38</td>
<td>29.0/1.14</td>
<td>E8-11</td>
<td>0.1/0.6</td>
<td>16.0/0.63</td>
<td>M</td>
<td>M</td>
<td>720 @ 0.1</td>
<td>480</td>
</tr>
<tr>
<td>4532A/U</td>
<td>162.0/6.38</td>
<td>29.0/1.14</td>
<td>E8-11</td>
<td>0.1/0.6</td>
<td>16.0/0.63</td>
<td>M</td>
<td>M</td>
<td>720 @ 0.1</td>
<td>480</td>
<td>45</td>
</tr>
<tr>
<td>4532B/U</td>
<td>162.0/6.38</td>
<td>29.0/1.14</td>
<td>E8-11</td>
<td>0.1/0.6</td>
<td>16.0/0.63</td>
<td>M</td>
<td>M</td>
<td>720 @ 0.1</td>
<td>480</td>
<td>45</td>
</tr>
</tbody>
</table>

Notes

*Quality Grades:
A/U — Industrial (3rd) Level
A/U — Commercial (2nd) Level
B/U — Premium (1st) Level
**At 200 TVL
***Using RCA P200 slant-line test pattern.
Table II — Interchangeability Guide

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Name</th>
<th>Photoconductor Type</th>
<th>REPLACEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>S4092</td>
<td>Newvicon</td>
<td>4875U</td>
</tr>
<tr>
<td>2.</td>
<td>S4102</td>
<td>Newvicon</td>
<td>4875U</td>
</tr>
<tr>
<td>3.</td>
<td>4904</td>
<td>Newvicon</td>
<td>4875U</td>
</tr>
<tr>
<td>4.</td>
<td>E5071</td>
<td>Chainicon</td>
<td>4875U</td>
</tr>
<tr>
<td>5.</td>
<td>XQ1275</td>
<td>S.T. Vidicon</td>
<td>4875U</td>
</tr>
<tr>
<td>6.</td>
<td>4875</td>
<td>S.T. Vidicon</td>
<td>4875U</td>
</tr>
<tr>
<td>7.</td>
<td>4875/H</td>
<td>S.T. Vidicon</td>
<td>4875U</td>
</tr>
<tr>
<td>8.</td>
<td>S4075</td>
<td>Newvicon</td>
<td>4833U</td>
</tr>
<tr>
<td>9.</td>
<td>4905</td>
<td>Newvicon</td>
<td>4833U</td>
</tr>
<tr>
<td>10.</td>
<td>XQ1274</td>
<td>Newvicon</td>
<td>4833U</td>
</tr>
<tr>
<td>11.</td>
<td>E5072</td>
<td>Chainicon</td>
<td>4833U</td>
</tr>
<tr>
<td>12.</td>
<td>E5052</td>
<td>Chainicon</td>
<td>4833U</td>
</tr>
<tr>
<td>13.</td>
<td>4833</td>
<td>S.T. Vidicon</td>
<td>4833U</td>
</tr>
<tr>
<td>14.</td>
<td>4833/H</td>
<td>S.T. Vidicon</td>
<td>4833U</td>
</tr>
<tr>
<td>15.</td>
<td>20PE15</td>
<td>S.T. Vidicon</td>
<td>4833U</td>
</tr>
<tr>
<td>17.</td>
<td>P6124</td>
<td>S.T. Vidicon</td>
<td>4833U</td>
</tr>
<tr>
<td>18.</td>
<td>Z4937</td>
<td>S.T. Vidicon</td>
<td>4833U</td>
</tr>
<tr>
<td>19.</td>
<td>9231</td>
<td>S.T. Vidicon</td>
<td>4833U</td>
</tr>
<tr>
<td>20.</td>
<td>S4076</td>
<td>Newvicon</td>
<td>4532U</td>
</tr>
<tr>
<td>21.</td>
<td>4906</td>
<td>Newvicon</td>
<td>4532U</td>
</tr>
<tr>
<td>22.</td>
<td>XQ1440</td>
<td>Newvicon</td>
<td>4532U</td>
</tr>
<tr>
<td>23.</td>
<td>E5001</td>
<td>Chainicon</td>
<td>4532U</td>
</tr>
<tr>
<td>24.</td>
<td>E5091</td>
<td>Chainicon</td>
<td>4532U</td>
</tr>
<tr>
<td>25.</td>
<td>4532</td>
<td>S.T. Vidicon</td>
<td>4532U</td>
</tr>
<tr>
<td>26.</td>
<td>20PE14</td>
<td>S.T. Vidicon</td>
<td>4532U</td>
</tr>
<tr>
<td>27.</td>
<td>N736</td>
<td>S.T. Vidicon</td>
<td>4532U</td>
</tr>
<tr>
<td>28.</td>
<td>E5036</td>
<td>S.T. Vidicon</td>
<td>4532U</td>
</tr>
<tr>
<td>29.</td>
<td>E5058</td>
<td>S.T. Vidicon</td>
<td>4532U</td>
</tr>
<tr>
<td>30.</td>
<td>TH9828</td>
<td>S.T. Vidicon</td>
<td>4532U</td>
</tr>
<tr>
<td>31.</td>
<td>P6125</td>
<td>S.T. Vidicon</td>
<td>4532U</td>
</tr>
<tr>
<td>32.</td>
<td>P8126</td>
<td>S.T. Vidicon</td>
<td>4532U</td>
</tr>
<tr>
<td>33.</td>
<td>S1200,1,2,3</td>
<td>S.T. Vidicon</td>
<td>4532U</td>
</tr>
<tr>
<td>34.</td>
<td>XQ1200</td>
<td>S.T. Vidicon</td>
<td>4532U</td>
</tr>
<tr>
<td>35.</td>
<td>Z7975</td>
<td>S.T. Vidicon</td>
<td>4532U</td>
</tr>
<tr>
<td>36.</td>
<td>9901</td>
<td>S.T. Vidicon</td>
<td>4532U</td>
</tr>
</tbody>
</table>

References
RCA Sales Offices (as of 8/81)

International

Belgium RCA S.A., Mercure Centre
100, Rue de la Fussée
1130 Brussels (02) 720.89.80

Brazil RCA Solid State Ltda.
Av. Brigadeiro Faria Lima
1476-7 Andar CEP-01452
Sao Paulo-SP 011 210-4033

Canada RCA Inc., 6303-30th St. S.E.
Calgary, Alberta T2C 1R4 (403) 279-3384

RCA Inc., 21001 No. Service Rd.
Trans-Canada Highway
Ste Anne de Bellevue
Quebec H9X 3L3 (514) 457-2185

RCA Inc., 1 Vulcan St.
Rexdale, Ontario M9W 1L3 (416) 247-5491

France RCA S.A., 32, rue Fessart
92100 Boulogne (01) 603.87.87

Germany RCA GmbH
Pfungstrosenstrasse 23
8000 Munich 70 (089) 714.30.47

Mexico RCA S.A. de C.V.
Apartado Postal 17-570
Mexico 17, D.F. 399-72-28

UK RCA Ltd., Lincoln Way - Windmill Road
Surbury-on-Thames.
Middlesex TW16 7HW (09327) 855.11

Hong Kong RCA International Ltd.
PO Box 112, 1027 Prince’s Building
Charter Road 234 181

U.S. (OEM)

Alabama RCA, Holiday Office Center, Suite 41
3322 So. Memorial Parkway
Huntsville, AL 35801 (205) 881-4100

Arizona RCA, 6900 E Camelback Rd., Suite 460
Scottsdale, AZ 85251 (602) 947-7235

California RCA, 4827 Sepulveda Blvd., Suite 420
Sherman Oaks, CA 91403 (213) 468-4200

RCA, 4546 El Camino Real
Los Altos, CA 94022 (415) 948-8996

RCA, 8333 Claremont Mesa Blvd.
Suite 105
San Diego, CA 92111 (714) 279-0420

RCA, 17731 Irvine Blvd.
Suite 104, Magnolia Plaza
Tustin, CA 92680 (714) 832-5302

Colorado RCA, 6767 S. Spruce St.
Englewood, CO 80112 (303) 740-8441

Florida RCA, PO Box 12247
Lake Park, FL 33403 (305) 629-6350

RCA, 1850 Lee Road, Suite 135
Winter Park, FL 32789 (305) 647-7100

Illinois RCA, 2700 River Road
Des Plaines, IL 60018 (312) 391-4300

Indiana RCA Corp., 4410 Executive Blvd.
Suite 13A
El Wayne, IN 46808 (219) 484-6460

RCA, 9240 N. Meridian St.
Suite 102
Indianapolis, IN 46260 (317) 267-6375

Massachusetts RCA, 20 William St.
Wellesley, MA 02181 (617) 237-7970

Michigan RCA, 30400 Telegraph Rd.
Suite 440
Birmingham, MI 48010 (313) 644-1151

Minnesota RCA, 6750 France Ave., S.
Suite 122
Minneapolis, MN 55435 (612) 929-0676

Kansas RCA, 8900 Indian Creek Parkway
Suite 410
Overland Park, KS 66210 (913) 624-7656

New Jersey RCA, 1998 Springdale Rd.
Cherry Hill, NJ 08003 (609) 338-5042

RCA, 67 Walnut Ave.
Clark, NJ 07066 (201) 574-3550

New York RCA, 160 Perinton Hill Office Park
Fairport, NY 14450 (716) 233-5240

RCA, One Huntingdon Quadrangle
Suite 2214, Huntington Station
LI, NY 11746 (516) 293-0180

North Carolina RCA, 3511 77 Center Drive
Charlotte, NC 28210 (704) 525-3424

Ohio RCA, 25525 Chagrin Blvd.
Pepper Pike, OH 44122 (216) 831-0030

Texas RCA, 4230 LBJ at Midway Rd.
Town North Plaza, Suite 121
Dallas, TX 75234 (214) 661-3515

Virginia RCA, 1901 N. Moore St.
Arlington, VA 22209 (703) 558-4161

U.S. (Distributor)

Distributor & Special Products Division, Deptford, NJ

Eastern Region RCA, 2000 Clements Bridge Rd.
Deptford, NJ 08096 (609) 269-8000

Western Region RCA, 6363 Sunset Boulevard
Hollywood, CA 90028 (213) 468-4092