Electronic Timers Employing Thyatron 2D21 or 2050

Timing circuits employing the RCA-2D21 or the RCA-2050 are particularly suitable for controlling small time intervals. Because these tubes are thyatrons of the tetrode type designed to operate with low grid current, they permit the use of high values of resistance in the grid circuit to control the duration of timing intervals over a relatively wide range. They also have a high control ratio and, therefore, a small and relatively linear portion of the exponential charge or discharge curve of the capacitor in the grid circuit can be used to give accurate and consistent timing control. As is common to all gas tubes, these tubes provide a sudden transition from non-conduction to full conduction which facilitates accurate control of both the start and the end of timing intervals. Thyatron also have the ability to control substantial amounts of power and, therefore, can be used to energize directly relatively large relays.

This Note describes three representative electronic timing control circuits which can utilize either the 2D21 or the 2050. These circuits for small time intervals have an accuracy in the order of one per cent obtainable with standard components. If voltage-regulated power supplies are used, even greater precision is obtainable.

On-Off Interval Timer

An electronic timer for intervals adjustable from 0.3 to 30 seconds is given in Fig.1. This timer is useful in applications in which a definite time interval is required for the performance of a specific operation such as, for example, turning the light source of a photographic enlarger on and off.

In this circuit, the timing interval is controlled by the voltage obtained from the resistance-capacitance network in the grid circuit of the thyatron. When switch S2 is actuated, the ac input circuit is completed and the timing operation begins. This switch applies ac voltage
to the plates of the twin diode and the thyratron, and energizes the relay L. One set of relay contacts completes the output circuit so that power is supplied to one pair of the output terminals. The other set of contacts completes the ac input circuit so that it is not broken when the actuating switch S_2 is released. The 6H6 operates as a voltage doubler. The grid voltage for the 2D21 (or 2050) is taken from the rectified output at R_2. Initially, the voltage on the grid is positive with respect to the cathode, but as C_3 or C_4 charges, the grid voltage becomes increasingly negative until it drops below the critical grid-voltage value. The thyratron then cuts off when the anode voltage is passing through a negative half cycle and stays cut off as long as the grid voltage is negative.

Because the charging time of C_3 is fixed, largely by the value of R_5, the timing interval is determined by the voltage obtained from the potentiometer R_2, the timing interval control. An interval ranging from 0.3 to 3 seconds is obtainable with C_3 (0.4 μF) and an interval ranging from 3 to 30 seconds is obtainable with C_4 (4 μF). The capacitors should be high-quality paper or oil-filled. The circuit constants are chosen so that the portion of the charging curve used is essentially linear. As soon as the operation cycle is complete, the grid capacitor is discharged through the relay contacts and the timer is ready for the next operation.
Repeating Sequence On-Off Interval Timer

An electronic timer which automatically repeats a sequence consisting of a definite "on" interval followed by a definite "off" interval is given in Fig. 2. In this circuit, the timing intervals are controlled by the resistances in the grid circuit of each thyatron. The thyatrons are used in a circuit resembling that of a free-running multivibrator with positive grid return except that the anodes are connected through a commutation capacitor C2 so that when one tube starts to conduct, both the anode voltage and the grid voltage of the other tube will be reduced below the values required for conduction. The commutation capacitor is required because the anode voltage of the thyatron operating with a dc supply must be considerably reduced before the grid can take control. Capacitor C2 charges or discharges rapidly and the anode voltage of the non-conducting tube is quickly restored but after the grid takes control. The resistance-capacitance network in the grid circuit, determines the rate at which the grid voltage goes positive and, therefore, determines the tube firing time. Tubes V1 and V2 may be adjusted by means of resistors R1 and R2 for conducting intervals ranging from 0.3 to 40 seconds. Switch S2 shifts the relay from the anode circuit of one tube to the anode circuit of the other and thus provides a simple method of quickly interchanging the "on" and "off" intervals.

![Electrical Diagram]

R1: 2500 ohms, 10 watts  
R2: 1000 ohms, 1.0 watt  
R3: 3000 ohms, 10 watts  
R4: 51000 ohms, 0.5 watt  
R5: 30000 ohms, 0.5 watt  
R6: 860000 ohms, 0.5 watt  
R7: Timing control, potentiometer, 7.5 megohms  
R8: 1 megohm, 0.5 watt  
R9 R10: 100000 ohms, 0.5 watt  
R11: Timing control, potentiometer, 1 megohm

C1: 40 µf, electrolytic, 450v  
C2 C3 C4: 4 µf, paper 400v  
T: Power transformer 300-0-300 volts RMS, 70 ma, 6.3v a  
2.08  
S1: Switch, single-pole, single-throw  
S2: Switch, double-pole, double-throw  
L: Relay, 115v dc coil, 3000 ohms

Fig. 2 - Repeating Sequence On-Off Interval Timer
Repeating Sequence 3-Step Interval Timer

An electronic timer which energizes and de-energizes three relays in sequence is given in Fig. 3. This circuit is similar to the preceding one but it has an additional thyatron V₃ which is connected so that its conduction interval follows that of V₂. The conduction interval of V₁ is terminated when either V₂ or V₃ starts to conduct. The start of conduction for V₂ is controlled by R₂; the start of conduction for V₃ is controlled by R₃. The conduction interval of V₂ and V₃ is terminated when V₁ starts to conduct. If it is desirable to have L₃ de-energize slightly later than L₂, a filter (C₆; R₁₃) connected as in Fig. 3 will delay its drop-out. A diagram illustrating the on and off sequence of each relay is given below.

The circuits described above are typical timing control circuits and serve to illustrate principles which may be readily applied to other timing devices.
ERRATUM NOTICE

for

Application Note AN-131 "Electronic Timers Employing Thyatrons 2D21 or 2050".

Page 3, paragraph 1, line 17. Timing control potentiometers R7 and R11 are incorrectly identified as R1 and R2. Please change R1 to R7 and R2 to R11.